| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmply1mon.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
rhmply1mon.q |
⊢ 𝑄 = ( Poly1 ‘ 𝑆 ) |
| 3 |
|
rhmply1mon.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
rhmply1mon.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 5 |
|
rhmply1mon.f |
⊢ 𝐹 = ( 𝑝 ∈ 𝐵 ↦ ( 𝐻 ∘ 𝑝 ) ) |
| 6 |
|
rhmply1mon.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 7 |
|
rhmply1mon.y |
⊢ 𝑌 = ( var1 ‘ 𝑆 ) |
| 8 |
|
rhmply1mon.t |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
| 9 |
|
rhmply1mon.u |
⊢ ∙ = ( ·𝑠 ‘ 𝑄 ) |
| 10 |
|
rhmply1mon.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑃 ) |
| 11 |
|
rhmply1mon.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑄 ) |
| 12 |
|
rhmply1mon.l |
⊢ ↑ = ( .g ‘ 𝑀 ) |
| 13 |
|
rhmply1mon.w |
⊢ ∧ = ( .g ‘ 𝑁 ) |
| 14 |
|
rhmply1mon.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 15 |
|
rhmply1mon.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
| 16 |
|
rhmply1mon.e |
⊢ ( 𝜑 → 𝐸 ∈ ℕ0 ) |
| 17 |
10 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 18 |
|
rhmrcl1 |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) |
| 19 |
14 18
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 20 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 22 |
10
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝑀 ∈ Mnd ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 24 |
6 1 3
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| 25 |
19 24
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 26 |
17 12 23 16 25
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝐸 ↑ 𝑋 ) ∈ 𝐵 ) |
| 27 |
1 2 3 4 5 8 9 14 15 26
|
rhmply1vsca |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐶 · ( 𝐸 ↑ 𝑋 ) ) ) = ( ( 𝐻 ‘ 𝐶 ) ∙ ( 𝐹 ‘ ( 𝐸 ↑ 𝑋 ) ) ) ) |
| 28 |
1 2 3 5 14
|
rhmply1 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑄 ) ) |
| 29 |
10 11
|
rhmmhm |
⊢ ( 𝐹 ∈ ( 𝑃 RingHom 𝑄 ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) |
| 30 |
28 29
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) |
| 31 |
17 12 13
|
mhmmulg |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝐸 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐸 ↑ 𝑋 ) ) = ( 𝐸 ∧ ( 𝐹 ‘ 𝑋 ) ) ) |
| 32 |
30 16 25 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐸 ↑ 𝑋 ) ) = ( 𝐸 ∧ ( 𝐹 ‘ 𝑋 ) ) ) |
| 33 |
1 2 3 5 6 7 14
|
rhmply1vr1 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = 𝑌 ) |
| 34 |
33
|
oveq2d |
⊢ ( 𝜑 → ( 𝐸 ∧ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐸 ∧ 𝑌 ) ) |
| 35 |
32 34
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐸 ↑ 𝑋 ) ) = ( 𝐸 ∧ 𝑌 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝐶 ) ∙ ( 𝐹 ‘ ( 𝐸 ↑ 𝑋 ) ) ) = ( ( 𝐻 ‘ 𝐶 ) ∙ ( 𝐸 ∧ 𝑌 ) ) ) |
| 37 |
27 36
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐶 · ( 𝐸 ↑ 𝑋 ) ) ) = ( ( 𝐻 ‘ 𝐶 ) ∙ ( 𝐸 ∧ 𝑌 ) ) ) |