Metamath Proof Explorer


Theorem rhmply1mon

Description: Apply a ring homomorphism between two univariate polynomial algebras to a scaled monomial, as in ply1coe . (Contributed by SN, 20-May-2025)

Ref Expression
Hypotheses rhmply1mon.p 𝑃 = ( Poly1𝑅 )
rhmply1mon.q 𝑄 = ( Poly1𝑆 )
rhmply1mon.b 𝐵 = ( Base ‘ 𝑃 )
rhmply1mon.k 𝐾 = ( Base ‘ 𝑅 )
rhmply1mon.f 𝐹 = ( 𝑝𝐵 ↦ ( 𝐻𝑝 ) )
rhmply1mon.x 𝑋 = ( var1𝑅 )
rhmply1mon.y 𝑌 = ( var1𝑆 )
rhmply1mon.t · = ( ·𝑠𝑃 )
rhmply1mon.u = ( ·𝑠𝑄 )
rhmply1mon.m 𝑀 = ( mulGrp ‘ 𝑃 )
rhmply1mon.n 𝑁 = ( mulGrp ‘ 𝑄 )
rhmply1mon.l = ( .g𝑀 )
rhmply1mon.w = ( .g𝑁 )
rhmply1mon.h ( 𝜑𝐻 ∈ ( 𝑅 RingHom 𝑆 ) )
rhmply1mon.c ( 𝜑𝐶𝐾 )
rhmply1mon.e ( 𝜑𝐸 ∈ ℕ0 )
Assertion rhmply1mon ( 𝜑 → ( 𝐹 ‘ ( 𝐶 · ( 𝐸 𝑋 ) ) ) = ( ( 𝐻𝐶 ) ( 𝐸 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 rhmply1mon.p 𝑃 = ( Poly1𝑅 )
2 rhmply1mon.q 𝑄 = ( Poly1𝑆 )
3 rhmply1mon.b 𝐵 = ( Base ‘ 𝑃 )
4 rhmply1mon.k 𝐾 = ( Base ‘ 𝑅 )
5 rhmply1mon.f 𝐹 = ( 𝑝𝐵 ↦ ( 𝐻𝑝 ) )
6 rhmply1mon.x 𝑋 = ( var1𝑅 )
7 rhmply1mon.y 𝑌 = ( var1𝑆 )
8 rhmply1mon.t · = ( ·𝑠𝑃 )
9 rhmply1mon.u = ( ·𝑠𝑄 )
10 rhmply1mon.m 𝑀 = ( mulGrp ‘ 𝑃 )
11 rhmply1mon.n 𝑁 = ( mulGrp ‘ 𝑄 )
12 rhmply1mon.l = ( .g𝑀 )
13 rhmply1mon.w = ( .g𝑁 )
14 rhmply1mon.h ( 𝜑𝐻 ∈ ( 𝑅 RingHom 𝑆 ) )
15 rhmply1mon.c ( 𝜑𝐶𝐾 )
16 rhmply1mon.e ( 𝜑𝐸 ∈ ℕ0 )
17 10 3 mgpbas 𝐵 = ( Base ‘ 𝑀 )
18 rhmrcl1 ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring )
19 14 18 syl ( 𝜑𝑅 ∈ Ring )
20 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
21 19 20 syl ( 𝜑𝑃 ∈ Ring )
22 10 ringmgp ( 𝑃 ∈ Ring → 𝑀 ∈ Mnd )
23 21 22 syl ( 𝜑𝑀 ∈ Mnd )
24 6 1 3 vr1cl ( 𝑅 ∈ Ring → 𝑋𝐵 )
25 19 24 syl ( 𝜑𝑋𝐵 )
26 17 12 23 16 25 mulgnn0cld ( 𝜑 → ( 𝐸 𝑋 ) ∈ 𝐵 )
27 1 2 3 4 5 8 9 14 15 26 rhmply1vsca ( 𝜑 → ( 𝐹 ‘ ( 𝐶 · ( 𝐸 𝑋 ) ) ) = ( ( 𝐻𝐶 ) ( 𝐹 ‘ ( 𝐸 𝑋 ) ) ) )
28 1 2 3 5 14 rhmply1 ( 𝜑𝐹 ∈ ( 𝑃 RingHom 𝑄 ) )
29 10 11 rhmmhm ( 𝐹 ∈ ( 𝑃 RingHom 𝑄 ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) )
30 28 29 syl ( 𝜑𝐹 ∈ ( 𝑀 MndHom 𝑁 ) )
31 17 12 13 mhmmulg ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝐸 ∈ ℕ0𝑋𝐵 ) → ( 𝐹 ‘ ( 𝐸 𝑋 ) ) = ( 𝐸 ( 𝐹𝑋 ) ) )
32 30 16 25 31 syl3anc ( 𝜑 → ( 𝐹 ‘ ( 𝐸 𝑋 ) ) = ( 𝐸 ( 𝐹𝑋 ) ) )
33 1 2 3 5 6 7 14 rhmply1vr1 ( 𝜑 → ( 𝐹𝑋 ) = 𝑌 )
34 33 oveq2d ( 𝜑 → ( 𝐸 ( 𝐹𝑋 ) ) = ( 𝐸 𝑌 ) )
35 32 34 eqtrd ( 𝜑 → ( 𝐹 ‘ ( 𝐸 𝑋 ) ) = ( 𝐸 𝑌 ) )
36 35 oveq2d ( 𝜑 → ( ( 𝐻𝐶 ) ( 𝐹 ‘ ( 𝐸 𝑋 ) ) ) = ( ( 𝐻𝐶 ) ( 𝐸 𝑌 ) ) )
37 27 36 eqtrd ( 𝜑 → ( 𝐹 ‘ ( 𝐶 · ( 𝐸 𝑋 ) ) ) = ( ( 𝐻𝐶 ) ( 𝐸 𝑌 ) ) )