Step |
Hyp |
Ref |
Expression |
1 |
|
rhmply1mon.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
rhmply1mon.q |
⊢ 𝑄 = ( Poly1 ‘ 𝑆 ) |
3 |
|
rhmply1mon.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
rhmply1mon.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
|
rhmply1mon.f |
⊢ 𝐹 = ( 𝑝 ∈ 𝐵 ↦ ( 𝐻 ∘ 𝑝 ) ) |
6 |
|
rhmply1mon.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
rhmply1mon.y |
⊢ 𝑌 = ( var1 ‘ 𝑆 ) |
8 |
|
rhmply1mon.t |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
9 |
|
rhmply1mon.u |
⊢ ∙ = ( ·𝑠 ‘ 𝑄 ) |
10 |
|
rhmply1mon.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑃 ) |
11 |
|
rhmply1mon.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑄 ) |
12 |
|
rhmply1mon.l |
⊢ ↑ = ( .g ‘ 𝑀 ) |
13 |
|
rhmply1mon.w |
⊢ ∧ = ( .g ‘ 𝑁 ) |
14 |
|
rhmply1mon.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) |
15 |
|
rhmply1mon.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
16 |
|
rhmply1mon.e |
⊢ ( 𝜑 → 𝐸 ∈ ℕ0 ) |
17 |
10 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
18 |
|
rhmrcl1 |
⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) |
19 |
14 18
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
20 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
22 |
10
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝑀 ∈ Mnd ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
24 |
6 1 3
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
25 |
19 24
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
26 |
17 12 23 16 25
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝐸 ↑ 𝑋 ) ∈ 𝐵 ) |
27 |
1 2 3 4 5 8 9 14 15 26
|
rhmply1vsca |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐶 · ( 𝐸 ↑ 𝑋 ) ) ) = ( ( 𝐻 ‘ 𝐶 ) ∙ ( 𝐹 ‘ ( 𝐸 ↑ 𝑋 ) ) ) ) |
28 |
1 2 3 5 14
|
rhmply1 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑄 ) ) |
29 |
10 11
|
rhmmhm |
⊢ ( 𝐹 ∈ ( 𝑃 RingHom 𝑄 ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) |
30 |
28 29
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) |
31 |
17 12 13
|
mhmmulg |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝐸 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐸 ↑ 𝑋 ) ) = ( 𝐸 ∧ ( 𝐹 ‘ 𝑋 ) ) ) |
32 |
30 16 25 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐸 ↑ 𝑋 ) ) = ( 𝐸 ∧ ( 𝐹 ‘ 𝑋 ) ) ) |
33 |
1 2 3 5 6 7 14
|
rhmply1vr1 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = 𝑌 ) |
34 |
33
|
oveq2d |
⊢ ( 𝜑 → ( 𝐸 ∧ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐸 ∧ 𝑌 ) ) |
35 |
32 34
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐸 ↑ 𝑋 ) ) = ( 𝐸 ∧ 𝑌 ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝐶 ) ∙ ( 𝐹 ‘ ( 𝐸 ↑ 𝑋 ) ) ) = ( ( 𝐻 ‘ 𝐶 ) ∙ ( 𝐸 ∧ 𝑌 ) ) ) |
37 |
27 36
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐶 · ( 𝐸 ↑ 𝑋 ) ) ) = ( ( 𝐻 ‘ 𝐶 ) ∙ ( 𝐸 ∧ 𝑌 ) ) ) |