Metamath Proof Explorer


Theorem rhmply1vr1

Description: A ring homomorphism between two univariate polynomial algebras sends one variable to the other. (Contributed by SN, 20-May-2025)

Ref Expression
Hypotheses rhmply1vr1.p 𝑃 = ( Poly1𝑅 )
rhmply1vr1.q 𝑄 = ( Poly1𝑆 )
rhmply1vr1.b 𝐵 = ( Base ‘ 𝑃 )
rhmply1vr1.f 𝐹 = ( 𝑝𝐵 ↦ ( 𝐻𝑝 ) )
rhmply1vr1.x 𝑋 = ( var1𝑅 )
rhmply1vr1.y 𝑌 = ( var1𝑆 )
rhmply1vr1.h ( 𝜑𝐻 ∈ ( 𝑅 RingHom 𝑆 ) )
Assertion rhmply1vr1 ( 𝜑 → ( 𝐹𝑋 ) = 𝑌 )

Proof

Step Hyp Ref Expression
1 rhmply1vr1.p 𝑃 = ( Poly1𝑅 )
2 rhmply1vr1.q 𝑄 = ( Poly1𝑆 )
3 rhmply1vr1.b 𝐵 = ( Base ‘ 𝑃 )
4 rhmply1vr1.f 𝐹 = ( 𝑝𝐵 ↦ ( 𝐻𝑝 ) )
5 rhmply1vr1.x 𝑋 = ( var1𝑅 )
6 rhmply1vr1.y 𝑌 = ( var1𝑆 )
7 rhmply1vr1.h ( 𝜑𝐻 ∈ ( 𝑅 RingHom 𝑆 ) )
8 coeq2 ( 𝑝 = 𝑋 → ( 𝐻𝑝 ) = ( 𝐻𝑋 ) )
9 rhmrcl1 ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring )
10 7 9 syl ( 𝜑𝑅 ∈ Ring )
11 5 1 3 vr1cl ( 𝑅 ∈ Ring → 𝑋𝐵 )
12 10 11 syl ( 𝜑𝑋𝐵 )
13 5 fvexi 𝑋 ∈ V
14 13 a1i ( 𝜑𝑋 ∈ V )
15 7 14 coexd ( 𝜑 → ( 𝐻𝑋 ) ∈ V )
16 4 8 12 15 fvmptd3 ( 𝜑 → ( 𝐹𝑋 ) = ( 𝐻𝑋 ) )
17 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
18 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
19 17 18 rhmf ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) )
20 7 19 syl ( 𝜑𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) )
21 eqid ( 1r𝑅 ) = ( 1r𝑅 )
22 17 21 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
23 10 22 syl ( 𝜑 → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
24 eqid ( 0g𝑅 ) = ( 0g𝑅 )
25 17 24 ring0cl ( 𝑅 ∈ Ring → ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) )
26 10 25 syl ( 𝜑 → ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) )
27 23 26 ifcld ( 𝜑 → if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ∈ ( Base ‘ 𝑅 ) )
28 27 adantr ( ( 𝜑𝑓 ∈ { ∈ ( ℕ0m 1o ) ∣ ( “ ℕ ) ∈ Fin } ) → if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ∈ ( Base ‘ 𝑅 ) )
29 20 28 cofmpt ( 𝜑 → ( 𝐻 ∘ ( 𝑓 ∈ { ∈ ( ℕ0m 1o ) ∣ ( “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) = ( 𝑓 ∈ { ∈ ( ℕ0m 1o ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝐻 ‘ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) )
30 fvif ( 𝐻 ‘ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 𝐻 ‘ ( 1r𝑅 ) ) , ( 𝐻 ‘ ( 0g𝑅 ) ) )
31 eqid ( 1r𝑆 ) = ( 1r𝑆 )
32 21 31 rhm1 ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐻 ‘ ( 1r𝑅 ) ) = ( 1r𝑆 ) )
33 7 32 syl ( 𝜑 → ( 𝐻 ‘ ( 1r𝑅 ) ) = ( 1r𝑆 ) )
34 rhmghm ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) )
35 eqid ( 0g𝑆 ) = ( 0g𝑆 )
36 24 35 ghmid ( 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐻 ‘ ( 0g𝑅 ) ) = ( 0g𝑆 ) )
37 7 34 36 3syl ( 𝜑 → ( 𝐻 ‘ ( 0g𝑅 ) ) = ( 0g𝑆 ) )
38 33 37 ifeq12d ( 𝜑 → if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 𝐻 ‘ ( 1r𝑅 ) ) , ( 𝐻 ‘ ( 0g𝑅 ) ) ) = if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑆 ) , ( 0g𝑆 ) ) )
39 30 38 eqtrid ( 𝜑 → ( 𝐻 ‘ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑆 ) , ( 0g𝑆 ) ) )
40 39 mpteq2dv ( 𝜑 → ( 𝑓 ∈ { ∈ ( ℕ0m 1o ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝐻 ‘ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) = ( 𝑓 ∈ { ∈ ( ℕ0m 1o ) ∣ ( “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑆 ) , ( 0g𝑆 ) ) ) )
41 29 40 eqtrd ( 𝜑 → ( 𝐻 ∘ ( 𝑓 ∈ { ∈ ( ℕ0m 1o ) ∣ ( “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) = ( 𝑓 ∈ { ∈ ( ℕ0m 1o ) ∣ ( “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑆 ) , ( 0g𝑆 ) ) ) )
42 eqid ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 )
43 eqid { ∈ ( ℕ0m 1o ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 1o ) ∣ ( “ ℕ ) ∈ Fin }
44 1oex 1o ∈ V
45 44 a1i ( 𝜑 → 1o ∈ V )
46 0lt1o ∅ ∈ 1o
47 46 a1i ( 𝜑 → ∅ ∈ 1o )
48 42 43 24 21 45 10 47 mvrval ( 𝜑 → ( ( 1o mVar 𝑅 ) ‘ ∅ ) = ( 𝑓 ∈ { ∈ ( ℕ0m 1o ) ∣ ( “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
49 48 coeq2d ( 𝜑 → ( 𝐻 ∘ ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( 𝐻 ∘ ( 𝑓 ∈ { ∈ ( ℕ0m 1o ) ∣ ( “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) )
50 eqid ( 1o mVar 𝑆 ) = ( 1o mVar 𝑆 )
51 rhmrcl2 ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring )
52 7 51 syl ( 𝜑𝑆 ∈ Ring )
53 50 43 35 31 45 52 47 mvrval ( 𝜑 → ( ( 1o mVar 𝑆 ) ‘ ∅ ) = ( 𝑓 ∈ { ∈ ( ℕ0m 1o ) ∣ ( “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 1o ↦ if ( 𝑦 = ∅ , 1 , 0 ) ) , ( 1r𝑆 ) , ( 0g𝑆 ) ) ) )
54 41 49 53 3eqtr4d ( 𝜑 → ( 𝐻 ∘ ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( 1o mVar 𝑆 ) ‘ ∅ ) )
55 5 vr1val 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ )
56 55 coeq2i ( 𝐻𝑋 ) = ( 𝐻 ∘ ( ( 1o mVar 𝑅 ) ‘ ∅ ) )
57 6 vr1val 𝑌 = ( ( 1o mVar 𝑆 ) ‘ ∅ )
58 54 56 57 3eqtr4g ( 𝜑 → ( 𝐻𝑋 ) = 𝑌 )
59 16 58 eqtrd ( 𝜑 → ( 𝐹𝑋 ) = 𝑌 )