Step |
Hyp |
Ref |
Expression |
1 |
|
rhmpropd.a |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐽 ) ) |
2 |
|
rhmpropd.b |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝐾 ) ) |
3 |
|
rhmpropd.c |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
4 |
|
rhmpropd.d |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝑀 ) ) |
5 |
|
rhmpropd.e |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
6 |
|
rhmpropd.f |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
7 |
|
rhmpropd.g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
8 |
|
rhmpropd.h |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑀 ) 𝑦 ) ) |
9 |
1 3 5 7
|
ringpropd |
⊢ ( 𝜑 → ( 𝐽 ∈ Ring ↔ 𝐿 ∈ Ring ) ) |
10 |
2 4 6 8
|
ringpropd |
⊢ ( 𝜑 → ( 𝐾 ∈ Ring ↔ 𝑀 ∈ Ring ) ) |
11 |
9 10
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐽 ∈ Ring ∧ 𝐾 ∈ Ring ) ↔ ( 𝐿 ∈ Ring ∧ 𝑀 ∈ Ring ) ) ) |
12 |
1 2 3 4 5 6
|
ghmpropd |
⊢ ( 𝜑 → ( 𝐽 GrpHom 𝐾 ) = ( 𝐿 GrpHom 𝑀 ) ) |
13 |
12
|
eleq2d |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ↔ 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ) ) |
14 |
|
eqid |
⊢ ( mulGrp ‘ 𝐽 ) = ( mulGrp ‘ 𝐽 ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
16 |
14 15
|
mgpbas |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ ( mulGrp ‘ 𝐽 ) ) |
17 |
1 16
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝐽 ) ) ) |
18 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
20 |
18 19
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
21 |
2 20
|
eqtrdi |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
22 |
|
eqid |
⊢ ( mulGrp ‘ 𝐿 ) = ( mulGrp ‘ 𝐿 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
24 |
22 23
|
mgpbas |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( mulGrp ‘ 𝐿 ) ) |
25 |
3 24
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝐿 ) ) ) |
26 |
|
eqid |
⊢ ( mulGrp ‘ 𝑀 ) = ( mulGrp ‘ 𝑀 ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
28 |
26 27
|
mgpbas |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ ( mulGrp ‘ 𝑀 ) ) |
29 |
4 28
|
eqtrdi |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ ( mulGrp ‘ 𝑀 ) ) ) |
30 |
|
eqid |
⊢ ( .r ‘ 𝐽 ) = ( .r ‘ 𝐽 ) |
31 |
14 30
|
mgpplusg |
⊢ ( .r ‘ 𝐽 ) = ( +g ‘ ( mulGrp ‘ 𝐽 ) ) |
32 |
31
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐽 ) ) 𝑦 ) |
33 |
|
eqid |
⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) |
34 |
22 33
|
mgpplusg |
⊢ ( .r ‘ 𝐿 ) = ( +g ‘ ( mulGrp ‘ 𝐿 ) ) |
35 |
34
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐿 ) ) 𝑦 ) |
36 |
7 32 35
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐽 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐿 ) ) 𝑦 ) ) |
37 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
38 |
18 37
|
mgpplusg |
⊢ ( .r ‘ 𝐾 ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) |
39 |
38
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) |
40 |
|
eqid |
⊢ ( .r ‘ 𝑀 ) = ( .r ‘ 𝑀 ) |
41 |
26 40
|
mgpplusg |
⊢ ( .r ‘ 𝑀 ) = ( +g ‘ ( mulGrp ‘ 𝑀 ) ) |
42 |
41
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑀 ) ) 𝑦 ) |
43 |
8 39 42
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑀 ) ) 𝑦 ) ) |
44 |
17 21 25 29 36 43
|
mhmpropd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐽 ) MndHom ( mulGrp ‘ 𝐾 ) ) = ( ( mulGrp ‘ 𝐿 ) MndHom ( mulGrp ‘ 𝑀 ) ) ) |
45 |
44
|
eleq2d |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ( mulGrp ‘ 𝐽 ) MndHom ( mulGrp ‘ 𝐾 ) ) ↔ 𝑓 ∈ ( ( mulGrp ‘ 𝐿 ) MndHom ( mulGrp ‘ 𝑀 ) ) ) ) |
46 |
13 45
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝐽 ) MndHom ( mulGrp ‘ 𝐾 ) ) ) ↔ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝐿 ) MndHom ( mulGrp ‘ 𝑀 ) ) ) ) ) |
47 |
11 46
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝐽 ∈ Ring ∧ 𝐾 ∈ Ring ) ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝐽 ) MndHom ( mulGrp ‘ 𝐾 ) ) ) ) ↔ ( ( 𝐿 ∈ Ring ∧ 𝑀 ∈ Ring ) ∧ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝐿 ) MndHom ( mulGrp ‘ 𝑀 ) ) ) ) ) ) |
48 |
14 18
|
isrhm |
⊢ ( 𝑓 ∈ ( 𝐽 RingHom 𝐾 ) ↔ ( ( 𝐽 ∈ Ring ∧ 𝐾 ∈ Ring ) ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝐽 ) MndHom ( mulGrp ‘ 𝐾 ) ) ) ) ) |
49 |
22 26
|
isrhm |
⊢ ( 𝑓 ∈ ( 𝐿 RingHom 𝑀 ) ↔ ( ( 𝐿 ∈ Ring ∧ 𝑀 ∈ Ring ) ∧ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝐿 ) MndHom ( mulGrp ‘ 𝑀 ) ) ) ) ) |
50 |
47 48 49
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐽 RingHom 𝐾 ) ↔ 𝑓 ∈ ( 𝐿 RingHom 𝑀 ) ) ) |
51 |
50
|
eqrdv |
⊢ ( 𝜑 → ( 𝐽 RingHom 𝐾 ) = ( 𝐿 RingHom 𝑀 ) ) |