| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmpsrlem1.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 2 |  | rhmpsrlem1.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 3 |  | rhmpsrlem1.x | ⊢ ( 𝜑  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 4 |  | rhmpsrlem1.y | ⊢ ( 𝜑  →  𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 5 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) )  ∈  V ) | 
						
							| 6 | 5 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) : { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } ⟶ V ) | 
						
							| 7 | 1 | psrbaglefi | ⊢ ( 𝑘  ∈  𝐷  →  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ∈  Fin ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ∈  Fin ) | 
						
							| 9 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 10 | 6 8 9 | fdmfifsupp | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) |