| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmpsrlem1.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 2 |  | rhmpsrlem1.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 3 |  | rhmpsrlem1.x | ⊢ ( 𝜑  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 4 |  | rhmpsrlem1.y | ⊢ ( 𝜑  →  𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 7 | 2 | ringcmnd | ⊢ ( 𝜑  →  𝑅  ∈  CMnd ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  𝑅  ∈  CMnd ) | 
						
							| 9 | 1 | psrbaglefi | ⊢ ( 𝑘  ∈  𝐷  →  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ∈  Fin ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ∈  Fin ) | 
						
							| 11 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 12 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑅  ∈  Ring ) | 
						
							| 13 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 14 |  | breq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∘r   ≤  𝑘  ↔  𝑥  ∘r   ≤  𝑘 ) ) | 
						
							| 15 | 14 | elrab | ⊢ ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↔  ( 𝑥  ∈  𝐷  ∧  𝑥  ∘r   ≤  𝑘 ) ) | 
						
							| 16 | 15 | biimpi | ⊢ ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  →  ( 𝑥  ∈  𝐷  ∧  𝑥  ∘r   ≤  𝑘 ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑥  ∈  𝐷  ∧  𝑥  ∘r   ≤  𝑘 ) ) | 
						
							| 18 | 17 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑥  ∈  𝐷 ) | 
						
							| 19 | 13 18 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑋 ‘ 𝑥 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 20 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 21 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑘  ∈  𝐷 ) | 
						
							| 22 | 1 | psrbagf | ⊢ ( 𝑥  ∈  𝐷  →  𝑥 : 𝐼 ⟶ ℕ0 ) | 
						
							| 23 | 18 22 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑥 : 𝐼 ⟶ ℕ0 ) | 
						
							| 24 | 17 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑥  ∘r   ≤  𝑘 ) | 
						
							| 25 | 1 | psrbagcon | ⊢ ( ( 𝑘  ∈  𝐷  ∧  𝑥 : 𝐼 ⟶ ℕ0  ∧  𝑥  ∘r   ≤  𝑘 )  →  ( ( 𝑘  ∘f   −  𝑥 )  ∈  𝐷  ∧  ( 𝑘  ∘f   −  𝑥 )  ∘r   ≤  𝑘 ) ) | 
						
							| 26 | 21 23 24 25 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( ( 𝑘  ∘f   −  𝑥 )  ∈  𝐷  ∧  ( 𝑘  ∘f   −  𝑥 )  ∘r   ≤  𝑘 ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑘  ∘f   −  𝑥 )  ∈  𝐷 ) | 
						
							| 28 | 20 27 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 29 | 5 11 12 19 28 | ringcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 30 | 29 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) : { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 31 | 1 2 3 4 | rhmpsrlem1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 32 | 5 6 8 10 30 31 | gsumcl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) )  ∈  ( Base ‘ 𝑅 ) ) |