Step |
Hyp |
Ref |
Expression |
1 |
|
rhmqusker.1 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
2 |
|
rhmqusker.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ) |
3 |
|
rhmqusker.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
4 |
|
rhmqusker.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) |
5 |
|
rhmqusker.s |
⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) ) |
6 |
|
rhmqusker.2 |
⊢ ( 𝜑 → 𝐺 ∈ CRing ) |
7 |
|
rhmqusker.j |
⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
8 |
1 2 3 4 7 6
|
rhmquskerlem |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 RingHom 𝐻 ) ) |
9 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
11 |
1 10 3 4 7 5
|
ghmqusker |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
14 |
12 13
|
gimf1o |
⊢ ( 𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) → 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) |
15 |
11 14
|
syl |
⊢ ( 𝜑 → 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) |
16 |
12 13
|
isrim |
⊢ ( 𝐽 ∈ ( 𝑄 RingIso 𝐻 ) ↔ ( 𝐽 ∈ ( 𝑄 RingHom 𝐻 ) ∧ 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) ) |
17 |
8 15 16
|
sylanbrc |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 RingIso 𝐻 ) ) |