Step |
Hyp |
Ref |
Expression |
1 |
|
rhmqusker.1 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
2 |
|
rhmqusker.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ) |
3 |
|
rhmqusker.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
4 |
|
rhmqusker.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) |
5 |
|
rhmquskerlem.j |
⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
6 |
|
rhmquskerlem.2 |
⊢ ( 𝜑 → 𝐺 ∈ CRing ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
8 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
9 |
|
eqid |
⊢ ( 1r ‘ 𝐻 ) = ( 1r ‘ 𝐻 ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝐻 ) = ( .r ‘ 𝐻 ) |
12 |
|
rhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐺 ∈ Ring ) |
13 |
2 12
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Ring ) |
14 |
|
eqid |
⊢ ( LIdeal ‘ 𝐺 ) = ( LIdeal ‘ 𝐺 ) |
15 |
14 1
|
kerlidl |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( LIdeal ‘ 𝐺 ) ) |
16 |
2 15
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 0 } ) ∈ ( LIdeal ‘ 𝐺 ) ) |
17 |
3 16
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( LIdeal ‘ 𝐺 ) ) |
18 |
14
|
crng2idl |
⊢ ( 𝐺 ∈ CRing → ( LIdeal ‘ 𝐺 ) = ( 2Ideal ‘ 𝐺 ) ) |
19 |
6 18
|
syl |
⊢ ( 𝜑 → ( LIdeal ‘ 𝐺 ) = ( 2Ideal ‘ 𝐺 ) ) |
20 |
17 19
|
eleqtrd |
⊢ ( 𝜑 → 𝐾 ∈ ( 2Ideal ‘ 𝐺 ) ) |
21 |
|
eqid |
⊢ ( 2Ideal ‘ 𝐺 ) = ( 2Ideal ‘ 𝐺 ) |
22 |
|
eqid |
⊢ ( 1r ‘ 𝐺 ) = ( 1r ‘ 𝐺 ) |
23 |
4 21 22
|
qus1 |
⊢ ( ( 𝐺 ∈ Ring ∧ 𝐾 ∈ ( 2Ideal ‘ 𝐺 ) ) → ( 𝑄 ∈ Ring ∧ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 1r ‘ 𝑄 ) ) ) |
24 |
13 20 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ∈ Ring ∧ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 1r ‘ 𝑄 ) ) ) |
25 |
24
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
26 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐻 ∈ Ring ) |
27 |
2 26
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Ring ) |
28 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
29 |
2 28
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
31 |
30 22
|
ringidcl |
⊢ ( 𝐺 ∈ Ring → ( 1r ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
32 |
13 31
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
33 |
1 29 3 4 5 32
|
ghmquskerlem1 |
⊢ ( 𝜑 → ( 𝐽 ‘ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ ( 1r ‘ 𝐺 ) ) ) |
34 |
24
|
simprd |
⊢ ( 𝜑 → [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 1r ‘ 𝑄 ) ) |
35 |
34
|
fveq2d |
⊢ ( 𝜑 → ( 𝐽 ‘ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐽 ‘ ( 1r ‘ 𝑄 ) ) ) |
36 |
22 9
|
rhm1 |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → ( 𝐹 ‘ ( 1r ‘ 𝐺 ) ) = ( 1r ‘ 𝐻 ) ) |
37 |
2 36
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝐺 ) ) = ( 1r ‘ 𝐻 ) ) |
38 |
33 35 37
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐽 ‘ ( 1r ‘ 𝑄 ) ) = ( 1r ‘ 𝐻 ) ) |
39 |
2
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ) |
40 |
4
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) ) |
41 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
42 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) ∈ V ) |
43 |
40 41 42 6
|
qusbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
44 |
1
|
ghmker |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
45 |
29 44
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
46 |
3 45
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
47 |
|
nsgsubg |
⊢ ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
48 |
|
eqid |
⊢ ( 𝐺 ~QG 𝐾 ) = ( 𝐺 ~QG 𝐾 ) |
49 |
30 48
|
eqger |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
50 |
46 47 49
|
3syl |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
51 |
50
|
qsss |
⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
52 |
43 51
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝑄 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
53 |
52
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
54 |
53
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) ) |
55 |
54
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) ) |
56 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ 𝑟 ) |
57 |
55 56
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
58 |
52
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
59 |
58
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
60 |
59
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
61 |
60
|
ad4antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
62 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ 𝑠 ) |
63 |
61 62
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
64 |
|
eqid |
⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝐺 ) |
65 |
30 64 11
|
rhmmul |
⊢ ( ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
66 |
39 57 63 65
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
67 |
50
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
68 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) |
69 |
43
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
70 |
68 69
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
71 |
|
qsel |
⊢ ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ∧ 𝑥 ∈ 𝑟 ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
72 |
67 70 56 71
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
73 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ∈ ( Base ‘ 𝑄 ) ) |
74 |
73 69
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
75 |
|
qsel |
⊢ ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ∧ 𝑦 ∈ 𝑠 ) → 𝑠 = [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) |
76 |
67 74 62 75
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 = [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) |
77 |
72 76
|
oveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) = ( [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) ) |
78 |
6
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐺 ∈ CRing ) |
79 |
17
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐾 ∈ ( LIdeal ‘ 𝐺 ) ) |
80 |
4 30 64 10 78 79 57 63
|
qusmul |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) = [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) ) |
81 |
77 80
|
eqtr2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) = ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) |
82 |
81
|
fveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) ) |
83 |
39 28
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
84 |
39 12
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐺 ∈ Ring ) |
85 |
30 64 84 57 63
|
ringcld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
86 |
1 83 3 4 5 85
|
ghmquskerlem1 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) ) |
87 |
82 86
|
eqtr3d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) ) |
88 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
89 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) |
90 |
88 89
|
oveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
91 |
66 87 90
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
92 |
29
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
93 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑠 ∈ ( Base ‘ 𝑄 ) ) |
94 |
1 92 3 4 5 93
|
ghmquskerlem2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑦 ∈ 𝑠 ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) |
95 |
91 94
|
r19.29a |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
96 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
97 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) |
98 |
1 96 3 4 5 97
|
ghmquskerlem2 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥 ∈ 𝑟 ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
99 |
95 98
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
100 |
99
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
101 |
1 29 3 4 5
|
ghmquskerlem3 |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ) |
102 |
7 8 9 10 11 25 27 38 100 101
|
isrhm2d |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 RingHom 𝐻 ) ) |