| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rhmqusnsg.0 | 
							⊢  0   =  ( 0g ‘ 𝐻 )  | 
						
						
							| 2 | 
							
								
							 | 
							rhmqusnsg.f | 
							⊢ ( 𝜑  →  𝐹  ∈  ( 𝐺  RingHom  𝐻 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							rhmqusnsg.k | 
							⊢ 𝐾  =  ( ◡ 𝐹  “  {  0  } )  | 
						
						
							| 4 | 
							
								
							 | 
							rhmqusnsg.q | 
							⊢ 𝑄  =  ( 𝐺  /s  ( 𝐺  ~QG  𝑁 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							rhmqusnsg.j | 
							⊢ 𝐽  =  ( 𝑞  ∈  ( Base ‘ 𝑄 )  ↦  ∪  ( 𝐹  “  𝑞 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							rhmqusnsg.g | 
							⊢ ( 𝜑  →  𝐺  ∈  CRing )  | 
						
						
							| 7 | 
							
								
							 | 
							rhmqusnsg.n | 
							⊢ ( 𝜑  →  𝑁  ⊆  𝐾 )  | 
						
						
							| 8 | 
							
								
							 | 
							rhmqusnsg.1 | 
							⊢ ( 𝜑  →  𝑁  ∈  ( LIdeal ‘ 𝐺 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( 1r ‘ 𝑄 )  =  ( 1r ‘ 𝑄 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( 1r ‘ 𝐻 )  =  ( 1r ‘ 𝐻 )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝑄 )  =  ( .r ‘ 𝑄 )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝐻 )  =  ( .r ‘ 𝐻 )  | 
						
						
							| 14 | 
							
								6
							 | 
							crngringd | 
							⊢ ( 𝜑  →  𝐺  ∈  Ring )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( LIdeal ‘ 𝐺 )  =  ( LIdeal ‘ 𝐺 )  | 
						
						
							| 16 | 
							
								15
							 | 
							crng2idl | 
							⊢ ( 𝐺  ∈  CRing  →  ( LIdeal ‘ 𝐺 )  =  ( 2Ideal ‘ 𝐺 ) )  | 
						
						
							| 17 | 
							
								6 16
							 | 
							syl | 
							⊢ ( 𝜑  →  ( LIdeal ‘ 𝐺 )  =  ( 2Ideal ‘ 𝐺 ) )  | 
						
						
							| 18 | 
							
								8 17
							 | 
							eleqtrd | 
							⊢ ( 𝜑  →  𝑁  ∈  ( 2Ideal ‘ 𝐺 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( 2Ideal ‘ 𝐺 )  =  ( 2Ideal ‘ 𝐺 )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							⊢ ( 1r ‘ 𝐺 )  =  ( 1r ‘ 𝐺 )  | 
						
						
							| 21 | 
							
								4 19 20
							 | 
							qus1 | 
							⊢ ( ( 𝐺  ∈  Ring  ∧  𝑁  ∈  ( 2Ideal ‘ 𝐺 ) )  →  ( 𝑄  ∈  Ring  ∧  [ ( 1r ‘ 𝐺 ) ] ( 𝐺  ~QG  𝑁 )  =  ( 1r ‘ 𝑄 ) ) )  | 
						
						
							| 22 | 
							
								14 18 21
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑄  ∈  Ring  ∧  [ ( 1r ‘ 𝐺 ) ] ( 𝐺  ~QG  𝑁 )  =  ( 1r ‘ 𝑄 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝑄  ∈  Ring )  | 
						
						
							| 24 | 
							
								
							 | 
							rhmrcl2 | 
							⊢ ( 𝐹  ∈  ( 𝐺  RingHom  𝐻 )  →  𝐻  ∈  Ring )  | 
						
						
							| 25 | 
							
								2 24
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐻  ∈  Ring )  | 
						
						
							| 26 | 
							
								
							 | 
							rhmghm | 
							⊢ ( 𝐹  ∈  ( 𝐺  RingHom  𝐻 )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) )  | 
						
						
							| 27 | 
							
								2 26
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							lidlnsg | 
							⊢ ( ( 𝐺  ∈  Ring  ∧  𝑁  ∈  ( LIdeal ‘ 𝐺 ) )  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) )  | 
						
						
							| 29 | 
							
								14 8 28
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 31 | 
							
								30 20
							 | 
							ringidcl | 
							⊢ ( 𝐺  ∈  Ring  →  ( 1r ‘ 𝐺 )  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 32 | 
							
								14 31
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 1r ‘ 𝐺 )  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 33 | 
							
								1 27 3 4 5 7 29 32
							 | 
							ghmqusnsglem1 | 
							⊢ ( 𝜑  →  ( 𝐽 ‘ [ ( 1r ‘ 𝐺 ) ] ( 𝐺  ~QG  𝑁 ) )  =  ( 𝐹 ‘ ( 1r ‘ 𝐺 ) ) )  | 
						
						
							| 34 | 
							
								22
							 | 
							simprd | 
							⊢ ( 𝜑  →  [ ( 1r ‘ 𝐺 ) ] ( 𝐺  ~QG  𝑁 )  =  ( 1r ‘ 𝑄 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( 𝐽 ‘ [ ( 1r ‘ 𝐺 ) ] ( 𝐺  ~QG  𝑁 ) )  =  ( 𝐽 ‘ ( 1r ‘ 𝑄 ) ) )  | 
						
						
							| 36 | 
							
								20 11
							 | 
							rhm1 | 
							⊢ ( 𝐹  ∈  ( 𝐺  RingHom  𝐻 )  →  ( 𝐹 ‘ ( 1r ‘ 𝐺 ) )  =  ( 1r ‘ 𝐻 ) )  | 
						
						
							| 37 | 
							
								2 36
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ ( 1r ‘ 𝐺 ) )  =  ( 1r ‘ 𝐻 ) )  | 
						
						
							| 38 | 
							
								33 35 37
							 | 
							3eqtr3d | 
							⊢ ( 𝜑  →  ( 𝐽 ‘ ( 1r ‘ 𝑄 ) )  =  ( 1r ‘ 𝐻 ) )  | 
						
						
							| 39 | 
							
								2
							 | 
							ad6antr | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝐹  ∈  ( 𝐺  RingHom  𝐻 ) )  | 
						
						
							| 40 | 
							
								4
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑄  =  ( 𝐺  /s  ( 𝐺  ~QG  𝑁 ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) )  | 
						
						
							| 42 | 
							
								
							 | 
							ovexd | 
							⊢ ( 𝜑  →  ( 𝐺  ~QG  𝑁 )  ∈  V )  | 
						
						
							| 43 | 
							
								40 41 42 6
							 | 
							qusbas | 
							⊢ ( 𝜑  →  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) )  =  ( Base ‘ 𝑄 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							nsgsubg | 
							⊢ ( 𝑁  ∈  ( NrmSGrp ‘ 𝐺 )  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 45 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐺  ~QG  𝑁 )  =  ( 𝐺  ~QG  𝑁 )  | 
						
						
							| 46 | 
							
								30 45
							 | 
							eqger | 
							⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 ) )  | 
						
						
							| 47 | 
							
								29 44 46
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							qsss | 
							⊢ ( 𝜑  →  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) )  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 49 | 
							
								43 48
							 | 
							eqsstrrd | 
							⊢ ( 𝜑  →  ( Base ‘ 𝑄 )  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  →  𝑟  ∈  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							elpwid | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  →  𝑟  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							ad5antr | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑟  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 53 | 
							
								
							 | 
							simp-4r | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑥  ∈  𝑟 )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							sseldd | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑥  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 55 | 
							
								49
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  →  𝑠  ∈  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							elpwid | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  →  𝑠  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  →  𝑠  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							ad4antr | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑠  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑦  ∈  𝑠 )  | 
						
						
							| 60 | 
							
								58 59
							 | 
							sseldd | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑦  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 61 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝐺 )  =  ( .r ‘ 𝐺 )  | 
						
						
							| 62 | 
							
								30 61 13
							 | 
							rhmmul | 
							⊢ ( ( 𝐹  ∈  ( 𝐺  RingHom  𝐻 )  ∧  𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 63 | 
							
								39 54 60 62
							 | 
							syl3anc | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 64 | 
							
								47
							 | 
							ad6antr | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 ) )  | 
						
						
							| 65 | 
							
								
							 | 
							simp-6r | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑟  ∈  ( Base ‘ 𝑄 ) )  | 
						
						
							| 66 | 
							
								43
							 | 
							ad6antr | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) )  =  ( Base ‘ 𝑄 ) )  | 
						
						
							| 67 | 
							
								65 66
							 | 
							eleqtrrd | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑟  ∈  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) ) )  | 
						
						
							| 68 | 
							
								
							 | 
							qsel | 
							⊢ ( ( ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 )  ∧  𝑟  ∈  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) )  ∧  𝑥  ∈  𝑟 )  →  𝑟  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  | 
						
						
							| 69 | 
							
								64 67 53 68
							 | 
							syl3anc | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑟  =  [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  | 
						
						
							| 70 | 
							
								
							 | 
							simp-5r | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑠  ∈  ( Base ‘ 𝑄 ) )  | 
						
						
							| 71 | 
							
								70 66
							 | 
							eleqtrrd | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑠  ∈  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) ) )  | 
						
						
							| 72 | 
							
								
							 | 
							qsel | 
							⊢ ( ( ( 𝐺  ~QG  𝑁 )  Er  ( Base ‘ 𝐺 )  ∧  𝑠  ∈  ( ( Base ‘ 𝐺 )  /  ( 𝐺  ~QG  𝑁 ) )  ∧  𝑦  ∈  𝑠 )  →  𝑠  =  [ 𝑦 ] ( 𝐺  ~QG  𝑁 ) )  | 
						
						
							| 73 | 
							
								64 71 59 72
							 | 
							syl3anc | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑠  =  [ 𝑦 ] ( 𝐺  ~QG  𝑁 ) )  | 
						
						
							| 74 | 
							
								69 73
							 | 
							oveq12d | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 )  =  ( [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝐺  ~QG  𝑁 ) ) )  | 
						
						
							| 75 | 
							
								6
							 | 
							ad6antr | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝐺  ∈  CRing )  | 
						
						
							| 76 | 
							
								8
							 | 
							ad6antr | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑁  ∈  ( LIdeal ‘ 𝐺 ) )  | 
						
						
							| 77 | 
							
								4 30 61 12 75 76 54 60
							 | 
							qusmulcrng | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝐺  ~QG  𝑁 ) )  =  [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺  ~QG  𝑁 ) )  | 
						
						
							| 78 | 
							
								74 77
							 | 
							eqtr2d | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺  ~QG  𝑁 )  =  ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							fveq2d | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐽 ‘ [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺  ~QG  𝑁 ) )  =  ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) )  | 
						
						
							| 80 | 
							
								39 26
							 | 
							syl | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) )  | 
						
						
							| 81 | 
							
								7
							 | 
							ad6antr | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑁  ⊆  𝐾 )  | 
						
						
							| 82 | 
							
								29
							 | 
							ad6antr | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) )  | 
						
						
							| 83 | 
							
								
							 | 
							rhmrcl1 | 
							⊢ ( 𝐹  ∈  ( 𝐺  RingHom  𝐻 )  →  𝐺  ∈  Ring )  | 
						
						
							| 84 | 
							
								39 83
							 | 
							syl | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝐺  ∈  Ring )  | 
						
						
							| 85 | 
							
								30 61 84 54 60
							 | 
							ringcld | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 )  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 86 | 
							
								1 80 3 4 5 81 82 85
							 | 
							ghmqusnsglem1 | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐽 ‘ [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺  ~QG  𝑁 ) )  =  ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) )  | 
						
						
							| 87 | 
							
								79 86
							 | 
							eqtr3d | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) )  =  ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) )  | 
						
						
							| 88 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 89 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  | 
						
						
							| 90 | 
							
								88 89
							 | 
							oveq12d | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 91 | 
							
								63 87 90
							 | 
							3eqtr4d | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑦  ∈  𝑠 )  ∧  ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) )  =  ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) )  | 
						
						
							| 92 | 
							
								27
							 | 
							ad4antr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) )  | 
						
						
							| 93 | 
							
								7
							 | 
							ad4antr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  𝑁  ⊆  𝐾 )  | 
						
						
							| 94 | 
							
								29
							 | 
							ad4antr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) )  | 
						
						
							| 95 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  𝑠  ∈  ( Base ‘ 𝑄 ) )  | 
						
						
							| 96 | 
							
								1 92 3 4 5 93 94 95
							 | 
							ghmqusnsglem2 | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  ∃ 𝑦  ∈  𝑠 ( 𝐽 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑦 ) )  | 
						
						
							| 97 | 
							
								91 96
							 | 
							r19.29a | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑥  ∈  𝑟 )  ∧  ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) )  =  ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) )  | 
						
						
							| 98 | 
							
								27
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) )  | 
						
						
							| 99 | 
							
								7
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  →  𝑁  ⊆  𝐾 )  | 
						
						
							| 100 | 
							
								29
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) )  | 
						
						
							| 101 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  →  𝑟  ∈  ( Base ‘ 𝑄 ) )  | 
						
						
							| 102 | 
							
								1 98 3 4 5 99 100 101
							 | 
							ghmqusnsglem2 | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  →  ∃ 𝑥  ∈  𝑟 ( 𝐽 ‘ 𝑟 )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 103 | 
							
								97 102
							 | 
							r19.29a | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝑄 ) )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) )  →  ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) )  =  ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							anasss | 
							⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ( Base ‘ 𝑄 )  ∧  𝑠  ∈  ( Base ‘ 𝑄 ) ) )  →  ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) )  =  ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) )  | 
						
						
							| 105 | 
							
								1 27 3 4 5 7 29
							 | 
							ghmqusnsg | 
							⊢ ( 𝜑  →  𝐽  ∈  ( 𝑄  GrpHom  𝐻 ) )  | 
						
						
							| 106 | 
							
								9 10 11 12 13 23 25 38 104 105
							 | 
							isrhm2d | 
							⊢ ( 𝜑  →  𝐽  ∈  ( 𝑄  RingHom  𝐻 ) )  |