Step |
Hyp |
Ref |
Expression |
1 |
|
rhmqusnsg.0 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
2 |
|
rhmqusnsg.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ) |
3 |
|
rhmqusnsg.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
4 |
|
rhmqusnsg.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
5 |
|
rhmqusnsg.j |
⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
6 |
|
rhmqusnsg.g |
⊢ ( 𝜑 → 𝐺 ∈ CRing ) |
7 |
|
rhmqusnsg.n |
⊢ ( 𝜑 → 𝑁 ⊆ 𝐾 ) |
8 |
|
rhmqusnsg.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( LIdeal ‘ 𝐺 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
10 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝐻 ) = ( 1r ‘ 𝐻 ) |
12 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝐻 ) = ( .r ‘ 𝐻 ) |
14 |
6
|
crngringd |
⊢ ( 𝜑 → 𝐺 ∈ Ring ) |
15 |
|
eqid |
⊢ ( LIdeal ‘ 𝐺 ) = ( LIdeal ‘ 𝐺 ) |
16 |
15
|
crng2idl |
⊢ ( 𝐺 ∈ CRing → ( LIdeal ‘ 𝐺 ) = ( 2Ideal ‘ 𝐺 ) ) |
17 |
6 16
|
syl |
⊢ ( 𝜑 → ( LIdeal ‘ 𝐺 ) = ( 2Ideal ‘ 𝐺 ) ) |
18 |
8 17
|
eleqtrd |
⊢ ( 𝜑 → 𝑁 ∈ ( 2Ideal ‘ 𝐺 ) ) |
19 |
|
eqid |
⊢ ( 2Ideal ‘ 𝐺 ) = ( 2Ideal ‘ 𝐺 ) |
20 |
|
eqid |
⊢ ( 1r ‘ 𝐺 ) = ( 1r ‘ 𝐺 ) |
21 |
4 19 20
|
qus1 |
⊢ ( ( 𝐺 ∈ Ring ∧ 𝑁 ∈ ( 2Ideal ‘ 𝐺 ) ) → ( 𝑄 ∈ Ring ∧ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) = ( 1r ‘ 𝑄 ) ) ) |
22 |
14 18 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ∈ Ring ∧ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) = ( 1r ‘ 𝑄 ) ) ) |
23 |
22
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
24 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐻 ∈ Ring ) |
25 |
2 24
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Ring ) |
26 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
27 |
2 26
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
28 |
|
lidlnsg |
⊢ ( ( 𝐺 ∈ Ring ∧ 𝑁 ∈ ( LIdeal ‘ 𝐺 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
29 |
14 8 28
|
syl2anc |
⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
31 |
30 20
|
ringidcl |
⊢ ( 𝐺 ∈ Ring → ( 1r ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
32 |
14 31
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
33 |
1 27 3 4 5 7 29 32
|
ghmqusnsglem1 |
⊢ ( 𝜑 → ( 𝐽 ‘ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ ( 1r ‘ 𝐺 ) ) ) |
34 |
22
|
simprd |
⊢ ( 𝜑 → [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) = ( 1r ‘ 𝑄 ) ) |
35 |
34
|
fveq2d |
⊢ ( 𝜑 → ( 𝐽 ‘ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐽 ‘ ( 1r ‘ 𝑄 ) ) ) |
36 |
20 11
|
rhm1 |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → ( 𝐹 ‘ ( 1r ‘ 𝐺 ) ) = ( 1r ‘ 𝐻 ) ) |
37 |
2 36
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝐺 ) ) = ( 1r ‘ 𝐻 ) ) |
38 |
33 35 37
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐽 ‘ ( 1r ‘ 𝑄 ) ) = ( 1r ‘ 𝐻 ) ) |
39 |
2
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ) |
40 |
4
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) ) |
41 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
42 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) ∈ V ) |
43 |
40 41 42 6
|
qusbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) ) |
44 |
|
nsgsubg |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
45 |
|
eqid |
⊢ ( 𝐺 ~QG 𝑁 ) = ( 𝐺 ~QG 𝑁 ) |
46 |
30 45
|
eqger |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
47 |
29 44 46
|
3syl |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
48 |
47
|
qsss |
⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
49 |
43 48
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝑄 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
50 |
49
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
51 |
50
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) ) |
52 |
51
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) ) |
53 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ 𝑟 ) |
54 |
52 53
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
55 |
49
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
56 |
55
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
57 |
56
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
58 |
57
|
ad4antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
59 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ 𝑠 ) |
60 |
58 59
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
61 |
|
eqid |
⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝐺 ) |
62 |
30 61 13
|
rhmmul |
⊢ ( ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
63 |
39 54 60 62
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
64 |
47
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
65 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) |
66 |
43
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) ) |
67 |
65 66
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ) |
68 |
|
qsel |
⊢ ( ( ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ∧ 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ∧ 𝑥 ∈ 𝑟 ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
69 |
64 67 53 68
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
70 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ∈ ( Base ‘ 𝑄 ) ) |
71 |
70 66
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ) |
72 |
|
qsel |
⊢ ( ( ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ∧ 𝑦 ∈ 𝑠 ) → 𝑠 = [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) |
73 |
64 71 59 72
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 = [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) |
74 |
69 73
|
oveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) = ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) ) |
75 |
6
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐺 ∈ CRing ) |
76 |
8
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑁 ∈ ( LIdeal ‘ 𝐺 ) ) |
77 |
4 30 61 12 75 76 54 60
|
qusmul |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) ) |
78 |
74 77
|
eqtr2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) = ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) |
79 |
78
|
fveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) ) |
80 |
39 26
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
81 |
7
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑁 ⊆ 𝐾 ) |
82 |
29
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
83 |
|
rhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐺 ∈ Ring ) |
84 |
39 83
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐺 ∈ Ring ) |
85 |
30 61 84 54 60
|
ringcld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
86 |
1 80 3 4 5 81 82 85
|
ghmqusnsglem1 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) ) |
87 |
79 86
|
eqtr3d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) ) |
88 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
89 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) |
90 |
88 89
|
oveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
91 |
63 87 90
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
92 |
27
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
93 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑁 ⊆ 𝐾 ) |
94 |
29
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
95 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑠 ∈ ( Base ‘ 𝑄 ) ) |
96 |
1 92 3 4 5 93 94 95
|
ghmqusnsglem2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑦 ∈ 𝑠 ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) |
97 |
91 96
|
r19.29a |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
98 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
99 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑁 ⊆ 𝐾 ) |
100 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
101 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) |
102 |
1 98 3 4 5 99 100 101
|
ghmqusnsglem2 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥 ∈ 𝑟 ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
103 |
97 102
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
104 |
103
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
105 |
1 27 3 4 5 7 29
|
ghmqusnsg |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ) |
106 |
9 10 11 12 13 23 25 38 104 105
|
isrhm2d |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 RingHom 𝐻 ) ) |