Metamath Proof Explorer


Theorem rhmrcl1

Description: Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Assertion rhmrcl1 ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring )

Proof

Step Hyp Ref Expression
1 dfrhm2 RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) )
2 1 elmpocl1 ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring )