| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmresel.h | ⊢ ( 𝜑  →  𝐻  =  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐻  =  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 3 | 2 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 𝐻 𝑌 )  =  ( 𝑋 (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) 𝑌 ) ) | 
						
							| 4 |  | ovres | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) 𝑌 )  =  ( 𝑋  RingHom  𝑌 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) 𝑌 )  =  ( 𝑋  RingHom  𝑌 ) ) | 
						
							| 6 | 3 5 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 𝐻 𝑌 )  =  ( 𝑋  RingHom  𝑌 ) ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  ↔  𝐹  ∈  ( 𝑋  RingHom  𝑌 ) ) ) | 
						
							| 8 | 7 | biimp3a | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) )  →  𝐹  ∈  ( 𝑋  RingHom  𝑌 ) ) |