| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmresfn.b | ⊢ ( 𝜑  →  𝐵  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 2 |  | rhmresfn.h | ⊢ ( 𝜑  →  𝐻  =  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 3 |  | rhmfn | ⊢  RingHom   Fn  ( Ring  ×  Ring ) | 
						
							| 4 |  | inss2 | ⊢ ( 𝑈  ∩  Ring )  ⊆  Ring | 
						
							| 5 | 1 4 | eqsstrdi | ⊢ ( 𝜑  →  𝐵  ⊆  Ring ) | 
						
							| 6 |  | xpss12 | ⊢ ( ( 𝐵  ⊆  Ring  ∧  𝐵  ⊆  Ring )  →  ( 𝐵  ×  𝐵 )  ⊆  ( Ring  ×  Ring ) ) | 
						
							| 7 | 5 5 6 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ×  𝐵 )  ⊆  ( Ring  ×  Ring ) ) | 
						
							| 8 |  | fnssres | ⊢ ( (  RingHom   Fn  ( Ring  ×  Ring )  ∧  ( 𝐵  ×  𝐵 )  ⊆  ( Ring  ×  Ring ) )  →  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) )  Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 9 | 3 7 8 | sylancr | ⊢ ( 𝜑  →  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) )  Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 10 | 2 | fneq1d | ⊢ ( 𝜑  →  ( 𝐻  Fn  ( 𝐵  ×  𝐵 )  ↔  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) )  Fn  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 11 | 9 10 | mpbird | ⊢ ( 𝜑  →  𝐻  Fn  ( 𝐵  ×  𝐵 ) ) |