| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmsscrnghm.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 2 |  | rhmsscrnghm.r | ⊢ ( 𝜑  →  𝑅  =  ( Ring  ∩  𝑈 ) ) | 
						
							| 3 |  | rhmsscrnghm.s | ⊢ ( 𝜑  →  𝑆  =  ( Rng  ∩  𝑈 ) ) | 
						
							| 4 |  | ringrng | ⊢ ( 𝑟  ∈  Ring  →  𝑟  ∈  Rng ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  ( 𝑟  ∈  Ring  →  𝑟  ∈  Rng ) ) | 
						
							| 6 | 5 | ssrdv | ⊢ ( 𝜑  →  Ring  ⊆  Rng ) | 
						
							| 7 | 6 | ssrind | ⊢ ( 𝜑  →  ( Ring  ∩  𝑈 )  ⊆  ( Rng  ∩  𝑈 ) ) | 
						
							| 8 | 7 2 3 | 3sstr4d | ⊢ ( 𝜑  →  𝑅  ⊆  𝑆 ) | 
						
							| 9 |  | ovres | ⊢ ( ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 )  →  ( 𝑥 (  RingHom   ↾  ( 𝑅  ×  𝑅 ) ) 𝑦 )  =  ( 𝑥  RingHom  𝑦 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 ) )  →  ( 𝑥 (  RingHom   ↾  ( 𝑅  ×  𝑅 ) ) 𝑦 )  =  ( 𝑥  RingHom  𝑦 ) ) | 
						
							| 11 | 10 | eleq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 ) )  →  ( ℎ  ∈  ( 𝑥 (  RingHom   ↾  ( 𝑅  ×  𝑅 ) ) 𝑦 )  ↔  ℎ  ∈  ( 𝑥  RingHom  𝑦 ) ) ) | 
						
							| 12 |  | rhmisrnghm | ⊢ ( ℎ  ∈  ( 𝑥  RingHom  𝑦 )  →  ℎ  ∈  ( 𝑥  RngHom  𝑦 ) ) | 
						
							| 13 | 8 | sseld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑅  →  𝑥  ∈  𝑆 ) ) | 
						
							| 14 | 8 | sseld | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑅  →  𝑦  ∈  𝑆 ) ) | 
						
							| 15 | 13 14 | anim12d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 )  →  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 ) )  →  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) ) | 
						
							| 17 |  | ovres | ⊢ ( ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 )  →  ( 𝑥 (  RngHom   ↾  ( 𝑆  ×  𝑆 ) ) 𝑦 )  =  ( 𝑥  RngHom  𝑦 ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 ) )  →  ( 𝑥 (  RngHom   ↾  ( 𝑆  ×  𝑆 ) ) 𝑦 )  =  ( 𝑥  RngHom  𝑦 ) ) | 
						
							| 19 | 18 | eleq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 ) )  →  ( ℎ  ∈  ( 𝑥 (  RngHom   ↾  ( 𝑆  ×  𝑆 ) ) 𝑦 )  ↔  ℎ  ∈  ( 𝑥  RngHom  𝑦 ) ) ) | 
						
							| 20 | 12 19 | imbitrrid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 ) )  →  ( ℎ  ∈  ( 𝑥  RingHom  𝑦 )  →  ℎ  ∈  ( 𝑥 (  RngHom   ↾  ( 𝑆  ×  𝑆 ) ) 𝑦 ) ) ) | 
						
							| 21 | 11 20 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 ) )  →  ( ℎ  ∈  ( 𝑥 (  RingHom   ↾  ( 𝑅  ×  𝑅 ) ) 𝑦 )  →  ℎ  ∈  ( 𝑥 (  RngHom   ↾  ( 𝑆  ×  𝑆 ) ) 𝑦 ) ) ) | 
						
							| 22 | 21 | ssrdv | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 ) )  →  ( 𝑥 (  RingHom   ↾  ( 𝑅  ×  𝑅 ) ) 𝑦 )  ⊆  ( 𝑥 (  RngHom   ↾  ( 𝑆  ×  𝑆 ) ) 𝑦 ) ) | 
						
							| 23 | 22 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑅 ∀ 𝑦  ∈  𝑅 ( 𝑥 (  RingHom   ↾  ( 𝑅  ×  𝑅 ) ) 𝑦 )  ⊆  ( 𝑥 (  RngHom   ↾  ( 𝑆  ×  𝑆 ) ) 𝑦 ) ) | 
						
							| 24 |  | inss1 | ⊢ ( Ring  ∩  𝑈 )  ⊆  Ring | 
						
							| 25 | 2 24 | eqsstrdi | ⊢ ( 𝜑  →  𝑅  ⊆  Ring ) | 
						
							| 26 |  | xpss12 | ⊢ ( ( 𝑅  ⊆  Ring  ∧  𝑅  ⊆  Ring )  →  ( 𝑅  ×  𝑅 )  ⊆  ( Ring  ×  Ring ) ) | 
						
							| 27 | 25 25 26 | syl2anc | ⊢ ( 𝜑  →  ( 𝑅  ×  𝑅 )  ⊆  ( Ring  ×  Ring ) ) | 
						
							| 28 |  | rhmfn | ⊢  RingHom   Fn  ( Ring  ×  Ring ) | 
						
							| 29 |  | fnssresb | ⊢ (  RingHom   Fn  ( Ring  ×  Ring )  →  ( (  RingHom   ↾  ( 𝑅  ×  𝑅 ) )  Fn  ( 𝑅  ×  𝑅 )  ↔  ( 𝑅  ×  𝑅 )  ⊆  ( Ring  ×  Ring ) ) ) | 
						
							| 30 | 28 29 | mp1i | ⊢ ( 𝜑  →  ( (  RingHom   ↾  ( 𝑅  ×  𝑅 ) )  Fn  ( 𝑅  ×  𝑅 )  ↔  ( 𝑅  ×  𝑅 )  ⊆  ( Ring  ×  Ring ) ) ) | 
						
							| 31 | 27 30 | mpbird | ⊢ ( 𝜑  →  (  RingHom   ↾  ( 𝑅  ×  𝑅 ) )  Fn  ( 𝑅  ×  𝑅 ) ) | 
						
							| 32 |  | inss1 | ⊢ ( Rng  ∩  𝑈 )  ⊆  Rng | 
						
							| 33 | 3 32 | eqsstrdi | ⊢ ( 𝜑  →  𝑆  ⊆  Rng ) | 
						
							| 34 |  | xpss12 | ⊢ ( ( 𝑆  ⊆  Rng  ∧  𝑆  ⊆  Rng )  →  ( 𝑆  ×  𝑆 )  ⊆  ( Rng  ×  Rng ) ) | 
						
							| 35 | 33 33 34 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆  ×  𝑆 )  ⊆  ( Rng  ×  Rng ) ) | 
						
							| 36 |  | rnghmfn | ⊢  RngHom   Fn  ( Rng  ×  Rng ) | 
						
							| 37 |  | fnssresb | ⊢ (  RngHom   Fn  ( Rng  ×  Rng )  →  ( (  RngHom   ↾  ( 𝑆  ×  𝑆 ) )  Fn  ( 𝑆  ×  𝑆 )  ↔  ( 𝑆  ×  𝑆 )  ⊆  ( Rng  ×  Rng ) ) ) | 
						
							| 38 | 36 37 | mp1i | ⊢ ( 𝜑  →  ( (  RngHom   ↾  ( 𝑆  ×  𝑆 ) )  Fn  ( 𝑆  ×  𝑆 )  ↔  ( 𝑆  ×  𝑆 )  ⊆  ( Rng  ×  Rng ) ) ) | 
						
							| 39 | 35 38 | mpbird | ⊢ ( 𝜑  →  (  RngHom   ↾  ( 𝑆  ×  𝑆 ) )  Fn  ( 𝑆  ×  𝑆 ) ) | 
						
							| 40 |  | incom | ⊢ ( Rng  ∩  𝑈 )  =  ( 𝑈  ∩  Rng ) | 
						
							| 41 |  | inex1g | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝑈  ∩  Rng )  ∈  V ) | 
						
							| 42 | 40 41 | eqeltrid | ⊢ ( 𝑈  ∈  𝑉  →  ( Rng  ∩  𝑈 )  ∈  V ) | 
						
							| 43 | 1 42 | syl | ⊢ ( 𝜑  →  ( Rng  ∩  𝑈 )  ∈  V ) | 
						
							| 44 | 3 43 | eqeltrd | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 45 | 31 39 44 | isssc | ⊢ ( 𝜑  →  ( (  RingHom   ↾  ( 𝑅  ×  𝑅 ) )  ⊆cat  (  RngHom   ↾  ( 𝑆  ×  𝑆 ) )  ↔  ( 𝑅  ⊆  𝑆  ∧  ∀ 𝑥  ∈  𝑅 ∀ 𝑦  ∈  𝑅 ( 𝑥 (  RingHom   ↾  ( 𝑅  ×  𝑅 ) ) 𝑦 )  ⊆  ( 𝑥 (  RngHom   ↾  ( 𝑆  ×  𝑆 ) ) 𝑦 ) ) ) ) | 
						
							| 46 | 8 23 45 | mpbir2and | ⊢ ( 𝜑  →  (  RingHom   ↾  ( 𝑅  ×  𝑅 ) )  ⊆cat  (  RngHom   ↾  ( 𝑆  ×  𝑆 ) ) ) |