Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcrescrhm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| rngcrescrhm.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | ||
| rngcrescrhm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | ||
| rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | ||
| Assertion | rhmsubccat | ⊢ ( 𝜑 → ( ( RngCat ‘ 𝑈 ) ↾cat 𝐻 ) ∈ Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | rngcrescrhm.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 3 | rngcrescrhm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | |
| 4 | rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | |
| 5 | eqid | ⊢ ( ( RngCat ‘ 𝑈 ) ↾cat 𝐻 ) = ( ( RngCat ‘ 𝑈 ) ↾cat 𝐻 ) | |
| 6 | 1 2 3 4 | rhmsubc | ⊢ ( 𝜑 → 𝐻 ∈ ( Subcat ‘ ( RngCat ‘ 𝑈 ) ) ) |
| 7 | 5 6 | subccat | ⊢ ( 𝜑 → ( ( RngCat ‘ 𝑈 ) ↾cat 𝐻 ) ∈ Cat ) |