| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngcrescrhm.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 2 |
|
rngcrescrhm.c |
⊢ 𝐶 = ( RngCat ‘ 𝑈 ) |
| 3 |
|
rngcrescrhm.r |
⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) |
| 4 |
|
rngcrescrhm.h |
⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) |
| 5 |
|
opelxpi |
⊢ ( ( 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝑅 × 𝑅 ) ) |
| 6 |
5
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝑅 × 𝑅 ) ) |
| 7 |
6
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ) → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( RingHom ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 8 |
|
df-ov |
⊢ ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) |
| 9 |
4
|
fveq1i |
⊢ ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) = ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) |
| 10 |
8 9
|
eqtri |
⊢ ( 𝑋 𝐻 𝑌 ) = ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) |
| 11 |
|
df-ov |
⊢ ( 𝑋 RingHom 𝑌 ) = ( RingHom ‘ 〈 𝑋 , 𝑌 〉 ) |
| 12 |
7 10 11
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ) → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |