| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngcrescrhm.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 2 |
|
rngcrescrhm.c |
⊢ 𝐶 = ( RngCat ‘ 𝑈 ) |
| 3 |
|
rngcrescrhm.r |
⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) |
| 4 |
|
rngcrescrhm.h |
⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝜑 ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝜑 ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ 𝑅 ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑥 ∈ 𝑅 ) |
| 9 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑦 ∈ 𝑅 ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑦 ∈ 𝑅 ) |
| 11 |
1 2 3 4
|
rhmsubclem2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 12 |
6 8 10 11
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 13 |
12
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑧 ∈ 𝑅 ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑧 ∈ 𝑅 ) |
| 16 |
1 2 3 4
|
rhmsubclem2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 RingHom 𝑧 ) ) |
| 17 |
6 10 15 16
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 RingHom 𝑧 ) ) |
| 18 |
17
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) ) |
| 19 |
13 18
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ↔ ( 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) ) ) |
| 20 |
|
rhmco |
⊢ ( ( 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ∧ 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
| 21 |
20
|
ancoms |
⊢ ( ( 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
| 22 |
19 21
|
biimtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) ) |
| 23 |
22
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
| 24 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑈 ∈ 𝑉 ) |
| 25 |
2
|
eqcomi |
⊢ ( RngCat ‘ 𝑈 ) = 𝐶 |
| 26 |
25
|
fveq2i |
⊢ ( comp ‘ ( RngCat ‘ 𝑈 ) ) = ( comp ‘ 𝐶 ) |
| 27 |
|
inss2 |
⊢ ( Ring ∩ 𝑈 ) ⊆ 𝑈 |
| 28 |
3 27
|
eqsstrdi |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑈 ) |
| 29 |
28
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ 𝑈 ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑥 ∈ 𝑈 ) |
| 31 |
30
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑥 ∈ 𝑈 ) |
| 32 |
28
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑅 → 𝑦 ∈ 𝑈 ) ) |
| 33 |
32
|
adantrd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑦 ∈ 𝑈 ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑦 ∈ 𝑈 ) ) |
| 35 |
34
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑦 ∈ 𝑈 ) |
| 36 |
35
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑦 ∈ 𝑈 ) |
| 37 |
28
|
sseld |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑈 ) ) |
| 38 |
37
|
adantld |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑧 ∈ 𝑈 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑧 ∈ 𝑈 ) ) |
| 40 |
39
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑧 ∈ 𝑈 ) |
| 41 |
40
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑧 ∈ 𝑈 ) |
| 42 |
4
|
oveqi |
⊢ ( 𝑥 𝐻 𝑦 ) = ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) |
| 43 |
8 10
|
ovresd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 44 |
42 43
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 45 |
44
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) ) |
| 46 |
|
eqid |
⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) |
| 47 |
|
eqid |
⊢ ( Base ‘ 𝑦 ) = ( Base ‘ 𝑦 ) |
| 48 |
46 47
|
rhmf |
⊢ ( 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
| 49 |
45 48
|
biimtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 50 |
49
|
com12 |
⊢ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 52 |
51
|
impcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
| 53 |
4
|
oveqi |
⊢ ( 𝑦 𝐻 𝑧 ) = ( 𝑦 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑧 ) |
| 54 |
|
ovres |
⊢ ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑦 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑧 ) = ( 𝑦 RingHom 𝑧 ) ) |
| 55 |
54
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑦 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑧 ) = ( 𝑦 RingHom 𝑧 ) ) |
| 56 |
53 55
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 RingHom 𝑧 ) ) |
| 57 |
56
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) ) |
| 58 |
|
eqid |
⊢ ( Base ‘ 𝑧 ) = ( Base ‘ 𝑧 ) |
| 59 |
47 58
|
rhmf |
⊢ ( 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) |
| 60 |
57 59
|
biimtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
| 61 |
60
|
com12 |
⊢ ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
| 63 |
62
|
impcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) |
| 64 |
2 24 26 31 36 41 52 63
|
rngcco |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RngCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) |
| 65 |
1 2 3 4
|
rhmsubclem2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 66 |
6 8 15 65
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 67 |
66
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 68 |
23 64 67
|
3eltr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RngCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |