| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmsubcsetc.c | ⊢ 𝐶  =  ( ExtStrCat ‘ 𝑈 ) | 
						
							| 2 |  | rhmsubcsetc.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 3 |  | rhmsubcsetc.b | ⊢ ( 𝜑  →  𝐵  =  ( Ring  ∩  𝑈 ) ) | 
						
							| 4 |  | rhmsubcsetc.h | ⊢ ( 𝜑  →  𝐻  =  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 5 | 2 3 | rhmsscmap | ⊢ ( 𝜑  →  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) )  ⊆cat  ( 𝑥  ∈  𝑈 ,  𝑦  ∈  𝑈  ↦  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 7 | 1 2 6 | estrchomfeqhom | ⊢ ( 𝜑  →  ( Homf  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) ) | 
						
							| 8 | 1 2 6 | estrchomfval | ⊢ ( 𝜑  →  ( Hom  ‘ 𝐶 )  =  ( 𝑥  ∈  𝑈 ,  𝑦  ∈  𝑈  ↦  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) ) ) | 
						
							| 9 | 7 8 | eqtrd | ⊢ ( 𝜑  →  ( Homf  ‘ 𝐶 )  =  ( 𝑥  ∈  𝑈 ,  𝑦  ∈  𝑈  ↦  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) ) ) | 
						
							| 10 | 5 4 9 | 3brtr4d | ⊢ ( 𝜑  →  𝐻  ⊆cat  ( Homf  ‘ 𝐶 ) ) | 
						
							| 11 | 1 2 3 4 | rhmsubcsetclem1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( Id ‘ 𝐶 ) ‘ 𝑥 )  ∈  ( 𝑥 𝐻 𝑥 ) ) | 
						
							| 12 | 1 2 3 4 | rhmsubcsetclem2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ∀ 𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 ) ) | 
						
							| 13 | 11 12 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 )  ∈  ( 𝑥 𝐻 𝑥 )  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ∀ 𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 ) ) ) | 
						
							| 14 | 13 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 )  ∈  ( 𝑥 𝐻 𝑥 )  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ∀ 𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝐶 ) | 
						
							| 16 |  | eqid | ⊢ ( Id ‘ 𝐶 )  =  ( Id ‘ 𝐶 ) | 
						
							| 17 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 18 | 1 | estrccat | ⊢ ( 𝑈  ∈  𝑉  →  𝐶  ∈  Cat ) | 
						
							| 19 | 2 18 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 20 |  | incom | ⊢ ( Ring  ∩  𝑈 )  =  ( 𝑈  ∩  Ring ) | 
						
							| 21 | 3 20 | eqtrdi | ⊢ ( 𝜑  →  𝐵  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 22 | 21 4 | rhmresfn | ⊢ ( 𝜑  →  𝐻  Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 23 | 15 16 17 19 22 | issubc2 | ⊢ ( 𝜑  →  ( 𝐻  ∈  ( Subcat ‘ 𝐶 )  ↔  ( 𝐻  ⊆cat  ( Homf  ‘ 𝐶 )  ∧  ∀ 𝑥  ∈  𝐵 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 )  ∈  ( 𝑥 𝐻 𝑥 )  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ∀ 𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 ) ) ) ) ) | 
						
							| 24 | 10 14 23 | mpbir2and | ⊢ ( 𝜑  →  𝐻  ∈  ( Subcat ‘ 𝐶 ) ) |