| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmsubcsetc.c | ⊢ 𝐶  =  ( ExtStrCat ‘ 𝑈 ) | 
						
							| 2 |  | rhmsubcsetc.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 3 |  | rhmsubcsetc.b | ⊢ ( 𝜑  →  𝐵  =  ( Ring  ∩  𝑈 ) ) | 
						
							| 4 |  | rhmsubcsetc.h | ⊢ ( 𝜑  →  𝐻  =  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 5 | 3 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↔  𝑥  ∈  ( Ring  ∩  𝑈 ) ) ) | 
						
							| 6 |  | elin | ⊢ ( 𝑥  ∈  ( Ring  ∩  𝑈 )  ↔  ( 𝑥  ∈  Ring  ∧  𝑥  ∈  𝑈 ) ) | 
						
							| 7 | 6 | simplbi | ⊢ ( 𝑥  ∈  ( Ring  ∩  𝑈 )  →  𝑥  ∈  Ring ) | 
						
							| 8 | 5 7 | biimtrdi | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  →  𝑥  ∈  Ring ) ) | 
						
							| 9 | 8 | imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  Ring ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑥 )  =  ( Base ‘ 𝑥 ) | 
						
							| 11 | 10 | idrhm | ⊢ ( 𝑥  ∈  Ring  →  (  I   ↾  ( Base ‘ 𝑥 ) )  ∈  ( 𝑥  RingHom  𝑥 ) ) | 
						
							| 12 | 9 11 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  (  I   ↾  ( Base ‘ 𝑥 ) )  ∈  ( 𝑥  RingHom  𝑥 ) ) | 
						
							| 13 |  | eqid | ⊢ ( Id ‘ 𝐶 )  =  ( Id ‘ 𝐶 ) | 
						
							| 14 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑈  ∈  𝑉 ) | 
						
							| 15 | 6 | simprbi | ⊢ ( 𝑥  ∈  ( Ring  ∩  𝑈 )  →  𝑥  ∈  𝑈 ) | 
						
							| 16 | 5 15 | biimtrdi | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝑈 ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝑈 ) | 
						
							| 18 | 1 13 14 17 | estrcid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( Id ‘ 𝐶 ) ‘ 𝑥 )  =  (  I   ↾  ( Base ‘ 𝑥 ) ) ) | 
						
							| 19 | 4 | oveqdr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 𝐻 𝑥 )  =  ( 𝑥 (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) 𝑥 ) ) | 
						
							| 20 |  | eqid | ⊢ ( RingCat ‘ 𝑈 )  =  ( RingCat ‘ 𝑈 ) | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ ( RingCat ‘ 𝑈 ) )  =  ( Base ‘ ( RingCat ‘ 𝑈 ) ) | 
						
							| 22 |  | eqid | ⊢ ( Hom  ‘ ( RingCat ‘ 𝑈 ) )  =  ( Hom  ‘ ( RingCat ‘ 𝑈 ) ) | 
						
							| 23 | 20 21 2 22 | ringchomfval | ⊢ ( 𝜑  →  ( Hom  ‘ ( RingCat ‘ 𝑈 ) )  =  (  RingHom   ↾  ( ( Base ‘ ( RingCat ‘ 𝑈 ) )  ×  ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) ) ) | 
						
							| 24 | 20 21 2 | ringcbas | ⊢ ( 𝜑  →  ( Base ‘ ( RingCat ‘ 𝑈 ) )  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 25 |  | incom | ⊢ ( Ring  ∩  𝑈 )  =  ( 𝑈  ∩  Ring ) | 
						
							| 26 | 3 25 | eqtrdi | ⊢ ( 𝜑  →  𝐵  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( 𝜑  →  ( 𝑈  ∩  Ring )  =  𝐵 ) | 
						
							| 28 | 24 27 | eqtrd | ⊢ ( 𝜑  →  ( Base ‘ ( RingCat ‘ 𝑈 ) )  =  𝐵 ) | 
						
							| 29 | 28 | sqxpeqd | ⊢ ( 𝜑  →  ( ( Base ‘ ( RingCat ‘ 𝑈 ) )  ×  ( Base ‘ ( RingCat ‘ 𝑈 ) ) )  =  ( 𝐵  ×  𝐵 ) ) | 
						
							| 30 | 29 | reseq2d | ⊢ ( 𝜑  →  (  RingHom   ↾  ( ( Base ‘ ( RingCat ‘ 𝑈 ) )  ×  ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) )  =  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 31 | 23 30 | eqtrd | ⊢ ( 𝜑  →  ( Hom  ‘ ( RingCat ‘ 𝑈 ) )  =  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( Hom  ‘ ( RingCat ‘ 𝑈 ) )  =  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 33 | 32 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) )  =  ( Hom  ‘ ( RingCat ‘ 𝑈 ) ) ) | 
						
							| 34 | 33 | oveqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) 𝑥 )  =  ( 𝑥 ( Hom  ‘ ( RingCat ‘ 𝑈 ) ) 𝑥 ) ) | 
						
							| 35 | 26 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↔  𝑥  ∈  ( 𝑈  ∩  Ring ) ) ) | 
						
							| 36 | 35 | biimpa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  ( 𝑈  ∩  Ring ) ) | 
						
							| 37 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( Base ‘ ( RingCat ‘ 𝑈 ) )  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 38 | 36 37 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) | 
						
							| 39 | 20 21 14 22 38 38 | ringchom | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 ( Hom  ‘ ( RingCat ‘ 𝑈 ) ) 𝑥 )  =  ( 𝑥  RingHom  𝑥 ) ) | 
						
							| 40 | 19 34 39 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 𝐻 𝑥 )  =  ( 𝑥  RingHom  𝑥 ) ) | 
						
							| 41 | 12 18 40 | 3eltr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( Id ‘ 𝐶 ) ‘ 𝑥 )  ∈  ( 𝑥 𝐻 𝑥 ) ) |