| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmsubcsetc.c | ⊢ 𝐶  =  ( ExtStrCat ‘ 𝑈 ) | 
						
							| 2 |  | rhmsubcsetc.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 3 |  | rhmsubcsetc.b | ⊢ ( 𝜑  →  𝐵  =  ( Ring  ∩  𝑈 ) ) | 
						
							| 4 |  | rhmsubcsetc.h | ⊢ ( 𝜑  →  𝐻  =  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝜑 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝜑 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  𝜑 ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) )  →  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) | 
						
							| 12 | 4 | rhmresel | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) )  →  𝑔  ∈  ( 𝑦  RingHom  𝑧 ) ) | 
						
							| 13 | 7 9 11 12 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  𝑔  ∈  ( 𝑦  RingHom  𝑧 ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 15 |  | simpl | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 16 | 14 15 | anim12i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 18 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) | 
						
							| 19 | 4 | rhmresel | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑓  ∈  ( 𝑥 𝐻 𝑦 ) )  →  𝑓  ∈  ( 𝑥  RingHom  𝑦 ) ) | 
						
							| 20 | 7 17 18 19 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  𝑓  ∈  ( 𝑥  RingHom  𝑦 ) ) | 
						
							| 21 |  | rhmco | ⊢ ( ( 𝑔  ∈  ( 𝑦  RingHom  𝑧 )  ∧  𝑓  ∈  ( 𝑥  RingHom  𝑦 ) )  →  ( 𝑔  ∘  𝑓 )  ∈  ( 𝑥  RingHom  𝑧 ) ) | 
						
							| 22 | 13 20 21 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  ( 𝑔  ∘  𝑓 )  ∈  ( 𝑥  RingHom  𝑧 ) ) | 
						
							| 23 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  𝑈  ∈  𝑉 ) | 
						
							| 24 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 25 | 3 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↔  𝑥  ∈  ( Ring  ∩  𝑈 ) ) ) | 
						
							| 26 |  | elinel2 | ⊢ ( 𝑥  ∈  ( Ring  ∩  𝑈 )  →  𝑥  ∈  𝑈 ) | 
						
							| 27 | 25 26 | biimtrdi | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝑈 ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝑈 ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑥  ∈  𝑈 ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  𝑥  ∈  𝑈 ) | 
						
							| 31 | 3 | eleq2d | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  ( Ring  ∩  𝑈 ) ) ) | 
						
							| 32 |  | elinel2 | ⊢ ( 𝑦  ∈  ( Ring  ∩  𝑈 )  →  𝑦  ∈  𝑈 ) | 
						
							| 33 | 31 32 | biimtrdi | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝑈 ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝑈 ) ) | 
						
							| 35 | 34 | com12 | ⊢ ( 𝑦  ∈  𝐵  →  ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑦  ∈  𝑈 ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑦  ∈  𝑈 ) ) | 
						
							| 37 | 36 | impcom | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑦  ∈  𝑈 ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  𝑦  ∈  𝑈 ) | 
						
							| 39 | 3 | eleq2d | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝐵  ↔  𝑧  ∈  ( Ring  ∩  𝑈 ) ) ) | 
						
							| 40 |  | elinel2 | ⊢ ( 𝑧  ∈  ( Ring  ∩  𝑈 )  →  𝑧  ∈  𝑈 ) | 
						
							| 41 | 39 40 | biimtrdi | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝐵  →  𝑧  ∈  𝑈 ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑧  ∈  𝐵  →  𝑧  ∈  𝑈 ) ) | 
						
							| 43 | 42 | adantld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  𝑧  ∈  𝑈 ) ) | 
						
							| 44 | 43 | imp | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑧  ∈  𝑈 ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  𝑧  ∈  𝑈 ) | 
						
							| 46 |  | eqid | ⊢ ( Base ‘ 𝑥 )  =  ( Base ‘ 𝑥 ) | 
						
							| 47 |  | eqid | ⊢ ( Base ‘ 𝑦 )  =  ( Base ‘ 𝑦 ) | 
						
							| 48 |  | eqid | ⊢ ( Base ‘ 𝑧 )  =  ( Base ‘ 𝑧 ) | 
						
							| 49 |  | simprl | ⊢ ( ( 𝑦  ∈  𝐵  ∧  ( 𝜑  ∧  𝑥  ∈  𝐵 ) )  →  𝜑 ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( 𝑦  ∈  𝐵  ∧  ( 𝜑  ∧  𝑥  ∈  𝐵 ) )  ∧  𝑓  ∈  ( 𝑥 𝐻 𝑦 ) )  →  𝜑 ) | 
						
							| 51 | 14 | anim1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 52 | 51 | ancoms | ⊢ ( ( 𝑦  ∈  𝐵  ∧  ( 𝜑  ∧  𝑥  ∈  𝐵 ) )  →  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( 𝑦  ∈  𝐵  ∧  ( 𝜑  ∧  𝑥  ∈  𝐵 ) )  ∧  𝑓  ∈  ( 𝑥 𝐻 𝑦 ) )  →  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 54 |  | simpr | ⊢ ( ( ( 𝑦  ∈  𝐵  ∧  ( 𝜑  ∧  𝑥  ∈  𝐵 ) )  ∧  𝑓  ∈  ( 𝑥 𝐻 𝑦 ) )  →  𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) | 
						
							| 55 | 50 53 54 19 | syl3anc | ⊢ ( ( ( 𝑦  ∈  𝐵  ∧  ( 𝜑  ∧  𝑥  ∈  𝐵 ) )  ∧  𝑓  ∈  ( 𝑥 𝐻 𝑦 ) )  →  𝑓  ∈  ( 𝑥  RingHom  𝑦 ) ) | 
						
							| 56 | 46 47 | rhmf | ⊢ ( 𝑓  ∈  ( 𝑥  RingHom  𝑦 )  →  𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) | 
						
							| 57 | 55 56 | syl | ⊢ ( ( ( 𝑦  ∈  𝐵  ∧  ( 𝜑  ∧  𝑥  ∈  𝐵 ) )  ∧  𝑓  ∈  ( 𝑥 𝐻 𝑦 ) )  →  𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) | 
						
							| 58 | 57 | ex | ⊢ ( ( 𝑦  ∈  𝐵  ∧  ( 𝜑  ∧  𝑥  ∈  𝐵 ) )  →  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  →  𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) | 
						
							| 59 | 58 | ex | ⊢ ( 𝑦  ∈  𝐵  →  ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  →  𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  →  𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) ) | 
						
							| 61 | 60 | impcom | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  →  𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) | 
						
							| 62 | 61 | com12 | ⊢ ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) )  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) | 
						
							| 64 | 63 | impcom | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) | 
						
							| 65 | 12 | 3expa | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) )  →  𝑔  ∈  ( 𝑦  RingHom  𝑧 ) ) | 
						
							| 66 | 47 48 | rhmf | ⊢ ( 𝑔  ∈  ( 𝑦  RingHom  𝑧 )  →  𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) | 
						
							| 67 | 65 66 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) )  →  𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) | 
						
							| 68 | 67 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑔  ∈  ( 𝑦 𝐻 𝑧 )  →  𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) | 
						
							| 69 | 68 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑔  ∈  ( 𝑦 𝐻 𝑧 )  →  𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) | 
						
							| 70 | 69 | adantld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) )  →  𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) | 
						
							| 71 | 70 | imp | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) | 
						
							| 72 | 1 23 24 30 38 45 46 47 48 64 71 | estrcco | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  =  ( 𝑔  ∘  𝑓 ) ) | 
						
							| 73 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐻  =  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 74 | 73 | oveqdr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥 𝐻 𝑧 )  =  ( 𝑥 (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) 𝑧 ) ) | 
						
							| 75 |  | ovres | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑥 (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) 𝑧 )  =  ( 𝑥  RingHom  𝑧 ) ) | 
						
							| 76 | 75 | ad2ant2l | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥 (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) 𝑧 )  =  ( 𝑥  RingHom  𝑧 ) ) | 
						
							| 77 | 74 76 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥 𝐻 𝑧 )  =  ( 𝑥  RingHom  𝑧 ) ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  ( 𝑥 𝐻 𝑧 )  =  ( 𝑥  RingHom  𝑧 ) ) | 
						
							| 79 | 22 72 78 | 3eltr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 ) ) | 
						
							| 80 | 79 | ralrimivva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ∀ 𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 ) ) | 
						
							| 81 | 80 | ralrimivva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ∀ 𝑔  ∈  ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 ) ) |