Metamath Proof Explorer


Theorem riccrng

Description: A ring is commutative if and only if an isomorphic ring is commutative. (Contributed by SN, 10-Jan-2025)

Ref Expression
Assertion riccrng ( 𝑅𝑟 𝑆 → ( 𝑅 ∈ CRing ↔ 𝑆 ∈ CRing ) )

Proof

Step Hyp Ref Expression
1 riccrng1 ( ( 𝑅𝑟 𝑆𝑅 ∈ CRing ) → 𝑆 ∈ CRing )
2 ricsym ( 𝑅𝑟 𝑆𝑆𝑟 𝑅 )
3 riccrng1 ( ( 𝑆𝑟 𝑅𝑆 ∈ CRing ) → 𝑅 ∈ CRing )
4 2 3 sylan ( ( 𝑅𝑟 𝑆𝑆 ∈ CRing ) → 𝑅 ∈ CRing )
5 1 4 impbida ( 𝑅𝑟 𝑆 → ( 𝑅 ∈ CRing ↔ 𝑆 ∈ CRing ) )