Description: A ring is commutative if and only if an isomorphic ring is commutative. (Contributed by SN, 10-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | riccrng | ⊢ ( 𝑅 ≃𝑟 𝑆 → ( 𝑅 ∈ CRing ↔ 𝑆 ∈ CRing ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riccrng1 | ⊢ ( ( 𝑅 ≃𝑟 𝑆 ∧ 𝑅 ∈ CRing ) → 𝑆 ∈ CRing ) | |
2 | ricsym | ⊢ ( 𝑅 ≃𝑟 𝑆 → 𝑆 ≃𝑟 𝑅 ) | |
3 | riccrng1 | ⊢ ( ( 𝑆 ≃𝑟 𝑅 ∧ 𝑆 ∈ CRing ) → 𝑅 ∈ CRing ) | |
4 | 2 3 | sylan | ⊢ ( ( 𝑅 ≃𝑟 𝑆 ∧ 𝑆 ∈ CRing ) → 𝑅 ∈ CRing ) |
5 | 1 4 | impbida | ⊢ ( 𝑅 ≃𝑟 𝑆 → ( 𝑅 ∈ CRing ↔ 𝑆 ∈ CRing ) ) |