Metamath Proof Explorer


Theorem ricdrng

Description: A ring is a division ring if and only if an isomorphic ring is a division ring. (Contributed by SN, 18-Feb-2025)

Ref Expression
Assertion ricdrng ( 𝑅𝑟 𝑆 → ( 𝑅 ∈ DivRing ↔ 𝑆 ∈ DivRing ) )

Proof

Step Hyp Ref Expression
1 ricdrng1 ( ( 𝑅𝑟 𝑆𝑅 ∈ DivRing ) → 𝑆 ∈ DivRing )
2 ricsym ( 𝑅𝑟 𝑆𝑆𝑟 𝑅 )
3 ricdrng1 ( ( 𝑆𝑟 𝑅𝑆 ∈ DivRing ) → 𝑅 ∈ DivRing )
4 2 3 sylan ( ( 𝑅𝑟 𝑆𝑆 ∈ DivRing ) → 𝑅 ∈ DivRing )
5 1 4 impbida ( 𝑅𝑟 𝑆 → ( 𝑅 ∈ DivRing ↔ 𝑆 ∈ DivRing ) )