Step |
Hyp |
Ref |
Expression |
1 |
|
brric |
⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( 𝑅 RingIso 𝑆 ) ≠ ∅ ) |
2 |
|
n0 |
⊢ ( ( 𝑅 RingIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) |
3 |
1 2
|
bitri |
⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
6 |
4 5
|
rimf1o |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑓 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) |
7 |
|
f1ofo |
⊢ ( 𝑓 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) → 𝑓 : ( Base ‘ 𝑅 ) –onto→ ( Base ‘ 𝑆 ) ) |
8 |
|
foima |
⊢ ( 𝑓 : ( Base ‘ 𝑅 ) –onto→ ( Base ‘ 𝑆 ) → ( 𝑓 “ ( Base ‘ 𝑅 ) ) = ( Base ‘ 𝑆 ) ) |
9 |
6 7 8
|
3syl |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑓 “ ( Base ‘ 𝑅 ) ) = ( Base ‘ 𝑆 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑆 ↾s ( 𝑓 “ ( Base ‘ 𝑅 ) ) ) = ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) |
11 |
|
rimrcl2 |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑆 ∈ Ring ) |
12 |
5
|
ressid |
⊢ ( 𝑆 ∈ Ring → ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) = 𝑆 ) |
13 |
11 12
|
syl |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) = 𝑆 ) |
14 |
10 13
|
eqtr2d |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑆 = ( 𝑆 ↾s ( 𝑓 “ ( Base ‘ 𝑅 ) ) ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → 𝑆 = ( 𝑆 ↾s ( 𝑓 “ ( Base ‘ 𝑅 ) ) ) ) |
16 |
|
eqid |
⊢ ( 𝑆 ↾s ( 𝑓 “ ( Base ‘ 𝑅 ) ) ) = ( 𝑆 ↾s ( 𝑓 “ ( Base ‘ 𝑅 ) ) ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
18 |
|
rimrhm |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ) |
20 |
4
|
sdrgid |
⊢ ( 𝑅 ∈ DivRing → ( Base ‘ 𝑅 ) ∈ ( SubDRing ‘ 𝑅 ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( Base ‘ 𝑅 ) ∈ ( SubDRing ‘ 𝑅 ) ) |
22 |
|
forn |
⊢ ( 𝑓 : ( Base ‘ 𝑅 ) –onto→ ( Base ‘ 𝑆 ) → ran 𝑓 = ( Base ‘ 𝑆 ) ) |
23 |
6 7 22
|
3syl |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ran 𝑓 = ( Base ‘ 𝑆 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ran 𝑓 = ( Base ‘ 𝑆 ) ) |
25 |
|
rhmrcl2 |
⊢ ( 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) |
26 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
27 |
5 26
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
28 |
18 25 27
|
3syl |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
29 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
30 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
31 |
29 30
|
drngunz |
⊢ ( 𝑅 ∈ DivRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
33 |
|
f1of1 |
⊢ ( 𝑓 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) → 𝑓 : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑆 ) ) |
34 |
6 33
|
syl |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑓 : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑆 ) ) |
35 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
36 |
4 30
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
37 |
35 36
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
38 |
4 29
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
39 |
35 38
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
40 |
37 39
|
jca |
⊢ ( 𝑅 ∈ DivRing → ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ) |
41 |
|
f1veqaeq |
⊢ ( ( 𝑓 : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑆 ) ∧ ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑓 ‘ ( 1r ‘ 𝑅 ) ) = ( 𝑓 ‘ ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
42 |
34 40 41
|
syl2an |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( ( 𝑓 ‘ ( 1r ‘ 𝑅 ) ) = ( 𝑓 ‘ ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
43 |
42
|
imp |
⊢ ( ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑅 ) ) = ( 𝑓 ‘ ( 0g ‘ 𝑅 ) ) ) → ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
44 |
32 43
|
mteqand |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( 𝑓 ‘ ( 1r ‘ 𝑅 ) ) ≠ ( 𝑓 ‘ ( 0g ‘ 𝑅 ) ) ) |
45 |
30 26
|
rhm1 |
⊢ ( 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝑓 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
46 |
19 45
|
syl |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( 𝑓 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
47 |
|
rhmghm |
⊢ ( 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑓 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
48 |
29 17
|
ghmid |
⊢ ( 𝑓 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝑓 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
49 |
19 47 48
|
3syl |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( 𝑓 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
50 |
44 46 49
|
3netr3d |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( 1r ‘ 𝑆 ) ≠ ( 0g ‘ 𝑆 ) ) |
51 |
|
nelsn |
⊢ ( ( 1r ‘ 𝑆 ) ≠ ( 0g ‘ 𝑆 ) → ¬ ( 1r ‘ 𝑆 ) ∈ { ( 0g ‘ 𝑆 ) } ) |
52 |
50 51
|
syl |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ¬ ( 1r ‘ 𝑆 ) ∈ { ( 0g ‘ 𝑆 ) } ) |
53 |
|
nelne1 |
⊢ ( ( ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ∧ ¬ ( 1r ‘ 𝑆 ) ∈ { ( 0g ‘ 𝑆 ) } ) → ( Base ‘ 𝑆 ) ≠ { ( 0g ‘ 𝑆 ) } ) |
54 |
28 52 53
|
syl2an2r |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( Base ‘ 𝑆 ) ≠ { ( 0g ‘ 𝑆 ) } ) |
55 |
24 54
|
eqnetrd |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ran 𝑓 ≠ { ( 0g ‘ 𝑆 ) } ) |
56 |
16 17 19 21 55
|
imadrhmcl |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( 𝑆 ↾s ( 𝑓 “ ( Base ‘ 𝑅 ) ) ) ∈ DivRing ) |
57 |
15 56
|
eqeltrd |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → 𝑆 ∈ DivRing ) |
58 |
57
|
ex |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ DivRing → 𝑆 ∈ DivRing ) ) |
59 |
58
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ DivRing → 𝑆 ∈ DivRing ) ) |
60 |
59
|
imp |
⊢ ( ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → 𝑆 ∈ DivRing ) |
61 |
3 60
|
sylanb |
⊢ ( ( 𝑅 ≃𝑟 𝑆 ∧ 𝑅 ∈ DivRing ) → 𝑆 ∈ DivRing ) |