Description: If two rings are (ring) isomorphic, their additive groups are (group) isomorphic. (Contributed by AV, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ricgic | ⊢ ( 𝑅 ≃𝑟 𝑆 → 𝑅 ≃𝑔 𝑆 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brric2 | ⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) ) | |
| 2 | rimgim | ⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) ) | |
| 3 | brgici | ⊢ ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑅 ≃𝑔 𝑆 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑅 ≃𝑔 𝑆 ) | 
| 5 | 4 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑅 ≃𝑔 𝑆 ) | 
| 6 | 1 5 | simplbiim | ⊢ ( 𝑅 ≃𝑟 𝑆 → 𝑅 ≃𝑔 𝑆 ) |