Description: If two rings are (ring) isomorphic, their additive groups are (group) isomorphic. (Contributed by AV, 24-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | ricgic | ⊢ ( 𝑅 ≃𝑟 𝑆 → 𝑅 ≃𝑔 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brric2 | ⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) ) | |
2 | rimgim | ⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) ) | |
3 | brgici | ⊢ ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑅 ≃𝑔 𝑆 ) | |
4 | 2 3 | syl | ⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑅 ≃𝑔 𝑆 ) |
5 | 4 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑅 ≃𝑔 𝑆 ) |
6 | 1 5 | simplbiim | ⊢ ( 𝑅 ≃𝑟 𝑆 → 𝑅 ≃𝑔 𝑆 ) |