Metamath Proof Explorer


Theorem ricgic

Description: If two rings are (ring) isomorphic, their additive groups are (group) isomorphic. (Contributed by AV, 24-Dec-2019)

Ref Expression
Assertion ricgic ( 𝑅𝑟 𝑆𝑅𝑔 𝑆 )

Proof

Step Hyp Ref Expression
1 brric2 ( 𝑅𝑟 𝑆 ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) )
2 rimgim ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) )
3 brgici ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑅𝑔 𝑆 )
4 2 3 syl ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑅𝑔 𝑆 )
5 4 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑅𝑔 𝑆 )
6 1 5 simplbiim ( 𝑅𝑟 𝑆𝑅𝑔 𝑆 )