Metamath Proof Explorer


Theorem ricqusker

Description: The image H of a ring homomorphism F is isomorphic with the quotient ring Q over F 's kernel K . This a part of what is sometimes called the first isomorphism theorem for rings. (Contributed by Thierry Arnoux, 10-Mar-2025)

Ref Expression
Hypotheses rhmqusker.1 0 = ( 0g𝐻 )
rhmqusker.f ( 𝜑𝐹 ∈ ( 𝐺 RingHom 𝐻 ) )
rhmqusker.k 𝐾 = ( 𝐹 “ { 0 } )
rhmqusker.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) )
rhmqusker.s ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) )
rhmqusker.2 ( 𝜑𝐺 ∈ CRing )
Assertion ricqusker ( 𝜑𝑄𝑟 𝐻 )

Proof

Step Hyp Ref Expression
1 rhmqusker.1 0 = ( 0g𝐻 )
2 rhmqusker.f ( 𝜑𝐹 ∈ ( 𝐺 RingHom 𝐻 ) )
3 rhmqusker.k 𝐾 = ( 𝐹 “ { 0 } )
4 rhmqusker.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) )
5 rhmqusker.s ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) )
6 rhmqusker.2 ( 𝜑𝐺 ∈ CRing )
7 imaeq2 ( 𝑝 = 𝑞 → ( 𝐹𝑝 ) = ( 𝐹𝑞 ) )
8 7 unieqd ( 𝑝 = 𝑞 ( 𝐹𝑝 ) = ( 𝐹𝑞 ) )
9 8 cbvmptv ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑝 ) ) = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
10 1 2 3 4 5 6 9 rhmqusker ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑝 ) ) ∈ ( 𝑄 RingIso 𝐻 ) )
11 brrici ( ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑝 ) ) ∈ ( 𝑄 RingIso 𝐻 ) → 𝑄𝑟 𝐻 )
12 10 11 syl ( 𝜑𝑄𝑟 𝐻 )