Description: Every ring contains a zero right ideal. (Contributed by AV, 13-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ridl0.u | ⊢ 𝑈 = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) | |
ridl0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
Assertion | ridl0 | ⊢ ( 𝑅 ∈ Ring → { 0 } ∈ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ridl0.u | ⊢ 𝑈 = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) | |
2 | ridl0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
3 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
4 | 3 | opprring | ⊢ ( 𝑅 ∈ Ring → ( oppr ‘ 𝑅 ) ∈ Ring ) |
5 | 3 2 | oppr0 | ⊢ 0 = ( 0g ‘ ( oppr ‘ 𝑅 ) ) |
6 | 1 5 | lidl0 | ⊢ ( ( oppr ‘ 𝑅 ) ∈ Ring → { 0 } ∈ 𝑈 ) |
7 | 4 6 | syl | ⊢ ( 𝑅 ∈ Ring → { 0 } ∈ 𝑈 ) |