| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lnfncnbd | ⊢ ( 𝑇  ∈  LinFn  →  ( 𝑇  ∈  ContFn  ↔  ( normfn ‘ 𝑇 )  ∈  ℝ ) ) | 
						
							| 2 |  | elin | ⊢ ( 𝑇  ∈  ( LinFn  ∩  ContFn )  ↔  ( 𝑇  ∈  LinFn  ∧  𝑇  ∈  ContFn ) ) | 
						
							| 3 |  | fveq1 | ⊢ ( 𝑇  =  if ( 𝑇  ∈  ( LinFn  ∩  ContFn ) ,  𝑇 ,  (  ℋ  ×  { 0 } ) )  →  ( 𝑇 ‘ 𝑥 )  =  ( if ( 𝑇  ∈  ( LinFn  ∩  ContFn ) ,  𝑇 ,  (  ℋ  ×  { 0 } ) ) ‘ 𝑥 ) ) | 
						
							| 4 | 3 | eqeq1d | ⊢ ( 𝑇  =  if ( 𝑇  ∈  ( LinFn  ∩  ContFn ) ,  𝑇 ,  (  ℋ  ×  { 0 } ) )  →  ( ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 )  ↔  ( if ( 𝑇  ∈  ( LinFn  ∩  ContFn ) ,  𝑇 ,  (  ℋ  ×  { 0 } ) ) ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 ) ) ) | 
						
							| 5 | 4 | rexralbidv | ⊢ ( 𝑇  =  if ( 𝑇  ∈  ( LinFn  ∩  ContFn ) ,  𝑇 ,  (  ℋ  ×  { 0 } ) )  →  ( ∃ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 )  ↔  ∃ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( if ( 𝑇  ∈  ( LinFn  ∩  ContFn ) ,  𝑇 ,  (  ℋ  ×  { 0 } ) ) ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 ) ) ) | 
						
							| 6 |  | inss1 | ⊢ ( LinFn  ∩  ContFn )  ⊆  LinFn | 
						
							| 7 |  | 0lnfn | ⊢ (  ℋ  ×  { 0 } )  ∈  LinFn | 
						
							| 8 |  | 0cnfn | ⊢ (  ℋ  ×  { 0 } )  ∈  ContFn | 
						
							| 9 |  | elin | ⊢ ( (  ℋ  ×  { 0 } )  ∈  ( LinFn  ∩  ContFn )  ↔  ( (  ℋ  ×  { 0 } )  ∈  LinFn  ∧  (  ℋ  ×  { 0 } )  ∈  ContFn ) ) | 
						
							| 10 | 7 8 9 | mpbir2an | ⊢ (  ℋ  ×  { 0 } )  ∈  ( LinFn  ∩  ContFn ) | 
						
							| 11 | 10 | elimel | ⊢ if ( 𝑇  ∈  ( LinFn  ∩  ContFn ) ,  𝑇 ,  (  ℋ  ×  { 0 } ) )  ∈  ( LinFn  ∩  ContFn ) | 
						
							| 12 | 6 11 | sselii | ⊢ if ( 𝑇  ∈  ( LinFn  ∩  ContFn ) ,  𝑇 ,  (  ℋ  ×  { 0 } ) )  ∈  LinFn | 
						
							| 13 |  | inss2 | ⊢ ( LinFn  ∩  ContFn )  ⊆  ContFn | 
						
							| 14 | 13 11 | sselii | ⊢ if ( 𝑇  ∈  ( LinFn  ∩  ContFn ) ,  𝑇 ,  (  ℋ  ×  { 0 } ) )  ∈  ContFn | 
						
							| 15 | 12 14 | riesz3i | ⊢ ∃ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( if ( 𝑇  ∈  ( LinFn  ∩  ContFn ) ,  𝑇 ,  (  ℋ  ×  { 0 } ) ) ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 ) | 
						
							| 16 | 5 15 | dedth | ⊢ ( 𝑇  ∈  ( LinFn  ∩  ContFn )  →  ∃ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 ) ) | 
						
							| 17 | 2 16 | sylbir | ⊢ ( ( 𝑇  ∈  LinFn  ∧  𝑇  ∈  ContFn )  →  ∃ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 ) ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝑇  ∈  LinFn  →  ( 𝑇  ∈  ContFn  →  ∃ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 ) ) ) | 
						
							| 19 |  | normcl | ⊢ ( 𝑦  ∈   ℋ  →  ( normℎ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝑇  ∈  LinFn  ∧  𝑦  ∈   ℋ )  →  ( normℎ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 21 |  | fveq2 | ⊢ ( ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 )  →  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( abs ‘ ( 𝑥  ·ih  𝑦 ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( ( 𝑇  ∈  LinFn  ∧  𝑥  ∈   ℋ )  ∧  𝑦  ∈   ℋ )  ∧  ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 ) )  →  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( abs ‘ ( 𝑥  ·ih  𝑦 ) ) ) | 
						
							| 23 |  | bcs | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( abs ‘ ( 𝑥  ·ih  𝑦 ) )  ≤  ( ( normℎ ‘ 𝑥 )  ·  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 24 |  | normcl | ⊢ ( 𝑥  ∈   ℋ  →  ( normℎ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 25 |  | recn | ⊢ ( ( normℎ ‘ 𝑥 )  ∈  ℝ  →  ( normℎ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 26 |  | recn | ⊢ ( ( normℎ ‘ 𝑦 )  ∈  ℝ  →  ( normℎ ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 27 |  | mulcom | ⊢ ( ( ( normℎ ‘ 𝑥 )  ∈  ℂ  ∧  ( normℎ ‘ 𝑦 )  ∈  ℂ )  →  ( ( normℎ ‘ 𝑥 )  ·  ( normℎ ‘ 𝑦 ) )  =  ( ( normℎ ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 28 | 25 26 27 | syl2an | ⊢ ( ( ( normℎ ‘ 𝑥 )  ∈  ℝ  ∧  ( normℎ ‘ 𝑦 )  ∈  ℝ )  →  ( ( normℎ ‘ 𝑥 )  ·  ( normℎ ‘ 𝑦 ) )  =  ( ( normℎ ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 29 | 24 19 28 | syl2an | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( normℎ ‘ 𝑥 )  ·  ( normℎ ‘ 𝑦 ) )  =  ( ( normℎ ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 30 | 23 29 | breqtrd | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( abs ‘ ( 𝑥  ·ih  𝑦 ) )  ≤  ( ( normℎ ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 31 | 30 | adantll | ⊢ ( ( ( 𝑇  ∈  LinFn  ∧  𝑥  ∈   ℋ )  ∧  𝑦  ∈   ℋ )  →  ( abs ‘ ( 𝑥  ·ih  𝑦 ) )  ≤  ( ( normℎ ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( ( 𝑇  ∈  LinFn  ∧  𝑥  ∈   ℋ )  ∧  𝑦  ∈   ℋ )  ∧  ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 ) )  →  ( abs ‘ ( 𝑥  ·ih  𝑦 ) )  ≤  ( ( normℎ ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 33 | 22 32 | eqbrtrd | ⊢ ( ( ( ( 𝑇  ∈  LinFn  ∧  𝑥  ∈   ℋ )  ∧  𝑦  ∈   ℋ )  ∧  ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 ) )  →  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( ( normℎ ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 34 | 33 | ex | ⊢ ( ( ( 𝑇  ∈  LinFn  ∧  𝑥  ∈   ℋ )  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 )  →  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( ( normℎ ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) ) | 
						
							| 35 | 34 | an32s | ⊢ ( ( ( 𝑇  ∈  LinFn  ∧  𝑦  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 )  →  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( ( normℎ ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) ) | 
						
							| 36 | 35 | ralimdva | ⊢ ( ( 𝑇  ∈  LinFn  ∧  𝑦  ∈   ℋ )  →  ( ∀ 𝑥  ∈   ℋ ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 )  →  ∀ 𝑥  ∈   ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( ( normℎ ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) ) | 
						
							| 37 |  | oveq1 | ⊢ ( 𝑧  =  ( normℎ ‘ 𝑦 )  →  ( 𝑧  ·  ( normℎ ‘ 𝑥 ) )  =  ( ( normℎ ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 38 | 37 | breq2d | ⊢ ( 𝑧  =  ( normℎ ‘ 𝑦 )  →  ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( 𝑧  ·  ( normℎ ‘ 𝑥 ) )  ↔  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( ( normℎ ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) ) | 
						
							| 39 | 38 | ralbidv | ⊢ ( 𝑧  =  ( normℎ ‘ 𝑦 )  →  ( ∀ 𝑥  ∈   ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( 𝑧  ·  ( normℎ ‘ 𝑥 ) )  ↔  ∀ 𝑥  ∈   ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( ( normℎ ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) ) | 
						
							| 40 | 39 | rspcev | ⊢ ( ( ( normℎ ‘ 𝑦 )  ∈  ℝ  ∧  ∀ 𝑥  ∈   ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( ( normℎ ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈   ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( 𝑧  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 41 | 20 36 40 | syl6an | ⊢ ( ( 𝑇  ∈  LinFn  ∧  𝑦  ∈   ℋ )  →  ( ∀ 𝑥  ∈   ℋ ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈   ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( 𝑧  ·  ( normℎ ‘ 𝑥 ) ) ) ) | 
						
							| 42 | 41 | rexlimdva | ⊢ ( 𝑇  ∈  LinFn  →  ( ∃ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈   ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( 𝑧  ·  ( normℎ ‘ 𝑥 ) ) ) ) | 
						
							| 43 |  | lnfncon | ⊢ ( 𝑇  ∈  LinFn  →  ( 𝑇  ∈  ContFn  ↔  ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈   ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( 𝑧  ·  ( normℎ ‘ 𝑥 ) ) ) ) | 
						
							| 44 | 42 43 | sylibrd | ⊢ ( 𝑇  ∈  LinFn  →  ( ∃ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 )  →  𝑇  ∈  ContFn ) ) | 
						
							| 45 | 18 44 | impbid | ⊢ ( 𝑇  ∈  LinFn  →  ( 𝑇  ∈  ContFn  ↔  ∃ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 ) ) ) | 
						
							| 46 | 1 45 | bitr3d | ⊢ ( 𝑇  ∈  LinFn  →  ( ( normfn ‘ 𝑇 )  ∈  ℝ  ↔  ∃ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑇 ‘ 𝑥 )  =  ( 𝑥  ·ih  𝑦 ) ) ) |