Metamath Proof Explorer


Theorem riesz2

Description: Part 2 of the Riesz representation theorem for bounded linear functionals. The value of a bounded linear functional corresponds to a unique inner product. Part of Theorem 17.3 of Halmos p. 31. For part 1, see riesz1 . (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion riesz2 ( ( 𝑇 ∈ LinFn ∧ ( normfn𝑇 ) ∈ ℝ ) → ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇𝑥 ) = ( 𝑥 ·ih 𝑦 ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝑇 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) )
2 lnfncnbd ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn ↔ ( normfn𝑇 ) ∈ ℝ ) )
3 2 pm5.32i ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) ↔ ( 𝑇 ∈ LinFn ∧ ( normfn𝑇 ) ∈ ℝ ) )
4 1 3 bitri ( 𝑇 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝑇 ∈ LinFn ∧ ( normfn𝑇 ) ∈ ℝ ) )
5 riesz4 ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇𝑥 ) = ( 𝑥 ·ih 𝑦 ) )
6 4 5 sylbir ( ( 𝑇 ∈ LinFn ∧ ( normfn𝑇 ) ∈ ℝ ) → ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇𝑥 ) = ( 𝑥 ·ih 𝑦 ) )