Description: Part 2 of the Riesz representation theorem for bounded linear functionals. The value of a bounded linear functional corresponds to a unique inner product. Part of Theorem 17.3 of Halmos p. 31. For part 1, see riesz1 . (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | riesz2 | ⊢ ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) → ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) ) | |
2 | lnfncnbd | ⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn ↔ ( normfn ‘ 𝑇 ) ∈ ℝ ) ) | |
3 | 2 | pm5.32i | ⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) ↔ ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) ) |
4 | 1 3 | bitri | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) ) |
5 | riesz4 | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) | |
6 | 4 5 | sylbir | ⊢ ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) → ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) |