Metamath Proof Explorer


Theorem riinint

Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion riinint ( ( 𝑋𝑉 ∧ ∀ 𝑘𝐼 𝑆𝑋 ) → ( 𝑋 𝑘𝐼 𝑆 ) = ( { 𝑋 } ∪ ran ( 𝑘𝐼𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 ssexg ( ( 𝑆𝑋𝑋𝑉 ) → 𝑆 ∈ V )
2 1 expcom ( 𝑋𝑉 → ( 𝑆𝑋𝑆 ∈ V ) )
3 2 ralimdv ( 𝑋𝑉 → ( ∀ 𝑘𝐼 𝑆𝑋 → ∀ 𝑘𝐼 𝑆 ∈ V ) )
4 3 imp ( ( 𝑋𝑉 ∧ ∀ 𝑘𝐼 𝑆𝑋 ) → ∀ 𝑘𝐼 𝑆 ∈ V )
5 dfiin3g ( ∀ 𝑘𝐼 𝑆 ∈ V → 𝑘𝐼 𝑆 = ran ( 𝑘𝐼𝑆 ) )
6 4 5 syl ( ( 𝑋𝑉 ∧ ∀ 𝑘𝐼 𝑆𝑋 ) → 𝑘𝐼 𝑆 = ran ( 𝑘𝐼𝑆 ) )
7 6 ineq2d ( ( 𝑋𝑉 ∧ ∀ 𝑘𝐼 𝑆𝑋 ) → ( 𝑋 𝑘𝐼 𝑆 ) = ( 𝑋 ran ( 𝑘𝐼𝑆 ) ) )
8 intun ( { 𝑋 } ∪ ran ( 𝑘𝐼𝑆 ) ) = ( { 𝑋 } ∩ ran ( 𝑘𝐼𝑆 ) )
9 intsng ( 𝑋𝑉 { 𝑋 } = 𝑋 )
10 9 adantr ( ( 𝑋𝑉 ∧ ∀ 𝑘𝐼 𝑆𝑋 ) → { 𝑋 } = 𝑋 )
11 10 ineq1d ( ( 𝑋𝑉 ∧ ∀ 𝑘𝐼 𝑆𝑋 ) → ( { 𝑋 } ∩ ran ( 𝑘𝐼𝑆 ) ) = ( 𝑋 ran ( 𝑘𝐼𝑆 ) ) )
12 8 11 eqtrid ( ( 𝑋𝑉 ∧ ∀ 𝑘𝐼 𝑆𝑋 ) → ( { 𝑋 } ∪ ran ( 𝑘𝐼𝑆 ) ) = ( 𝑋 ran ( 𝑘𝐼𝑆 ) ) )
13 7 12 eqtr4d ( ( 𝑋𝑉 ∧ ∀ 𝑘𝐼 𝑆𝑋 ) → ( 𝑋 𝑘𝐼 𝑆 ) = ( { 𝑋 } ∪ ran ( 𝑘𝐼𝑆 ) ) )