Step |
Hyp |
Ref |
Expression |
1 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → 𝑆 ∈ V ) |
2 |
1
|
expcom |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑆 ⊆ 𝑋 → 𝑆 ∈ V ) ) |
3 |
2
|
ralimdv |
⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 → ∀ 𝑘 ∈ 𝐼 𝑆 ∈ V ) ) |
4 |
3
|
imp |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ∀ 𝑘 ∈ 𝐼 𝑆 ∈ V ) |
5 |
|
dfiin3g |
⊢ ( ∀ 𝑘 ∈ 𝐼 𝑆 ∈ V → ∩ 𝑘 ∈ 𝐼 𝑆 = ∩ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ∩ 𝑘 ∈ 𝐼 𝑆 = ∩ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) |
7 |
6
|
ineq2d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆 ) = ( 𝑋 ∩ ∩ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) |
8 |
|
intun |
⊢ ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) = ( ∩ { 𝑋 } ∩ ∩ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) |
9 |
|
intsng |
⊢ ( 𝑋 ∈ 𝑉 → ∩ { 𝑋 } = 𝑋 ) |
10 |
9
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ∩ { 𝑋 } = 𝑋 ) |
11 |
10
|
ineq1d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ( ∩ { 𝑋 } ∩ ∩ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) = ( 𝑋 ∩ ∩ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) |
12 |
8 11
|
eqtrid |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) = ( 𝑋 ∩ ∩ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) |
13 |
7 12
|
eqtr4d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆 ) = ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) |