Metamath Proof Explorer


Theorem riinn0

Description: Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion riinn0 ( ( ∀ 𝑥𝑋 𝑆𝐴𝑋 ≠ ∅ ) → ( 𝐴 𝑥𝑋 𝑆 ) = 𝑥𝑋 𝑆 )

Proof

Step Hyp Ref Expression
1 incom ( 𝐴 𝑥𝑋 𝑆 ) = ( 𝑥𝑋 𝑆𝐴 )
2 r19.2z ( ( 𝑋 ≠ ∅ ∧ ∀ 𝑥𝑋 𝑆𝐴 ) → ∃ 𝑥𝑋 𝑆𝐴 )
3 2 ancoms ( ( ∀ 𝑥𝑋 𝑆𝐴𝑋 ≠ ∅ ) → ∃ 𝑥𝑋 𝑆𝐴 )
4 iinss ( ∃ 𝑥𝑋 𝑆𝐴 𝑥𝑋 𝑆𝐴 )
5 3 4 syl ( ( ∀ 𝑥𝑋 𝑆𝐴𝑋 ≠ ∅ ) → 𝑥𝑋 𝑆𝐴 )
6 df-ss ( 𝑥𝑋 𝑆𝐴 ↔ ( 𝑥𝑋 𝑆𝐴 ) = 𝑥𝑋 𝑆 )
7 5 6 sylib ( ( ∀ 𝑥𝑋 𝑆𝐴𝑋 ≠ ∅ ) → ( 𝑥𝑋 𝑆𝐴 ) = 𝑥𝑋 𝑆 )
8 1 7 eqtrid ( ( ∀ 𝑥𝑋 𝑆𝐴𝑋 ≠ ∅ ) → ( 𝐴 𝑥𝑋 𝑆 ) = 𝑥𝑋 𝑆 )