Step |
Hyp |
Ref |
Expression |
1 |
|
incom |
⊢ ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆 ) = ( ∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴 ) |
2 |
|
r19.2z |
⊢ ( ( 𝑋 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ) → ∃ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ) |
3 |
2
|
ancoms |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ) |
4 |
|
iinss |
⊢ ( ∃ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 → ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ) |
5 |
3 4
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅ ) → ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ) |
6 |
|
df-ss |
⊢ ( ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ↔ ( ∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴 ) = ∩ 𝑥 ∈ 𝑋 𝑆 ) |
7 |
5 6
|
sylib |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅ ) → ( ∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴 ) = ∩ 𝑥 ∈ 𝑋 𝑆 ) |
8 |
1 7
|
eqtrid |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅ ) → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆 ) = ∩ 𝑥 ∈ 𝑋 𝑆 ) |