Metamath Proof Explorer


Theorem riinopn

Description: A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis 1open.1 𝑋 = 𝐽
Assertion riinopn ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵𝐽 ) → ( 𝑋 𝑥𝐴 𝐵 ) ∈ 𝐽 )

Proof

Step Hyp Ref Expression
1 1open.1 𝑋 = 𝐽
2 riin0 ( 𝐴 = ∅ → ( 𝑋 𝑥𝐴 𝐵 ) = 𝑋 )
3 2 adantl ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵𝐽 ) ∧ 𝐴 = ∅ ) → ( 𝑋 𝑥𝐴 𝐵 ) = 𝑋 )
4 simpl1 ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵𝐽 ) ∧ 𝐴 = ∅ ) → 𝐽 ∈ Top )
5 1 topopn ( 𝐽 ∈ Top → 𝑋𝐽 )
6 4 5 syl ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵𝐽 ) ∧ 𝐴 = ∅ ) → 𝑋𝐽 )
7 3 6 eqeltrd ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵𝐽 ) ∧ 𝐴 = ∅ ) → ( 𝑋 𝑥𝐴 𝐵 ) ∈ 𝐽 )
8 1 eltopss ( ( 𝐽 ∈ Top ∧ 𝐵𝐽 ) → 𝐵𝑋 )
9 8 ex ( 𝐽 ∈ Top → ( 𝐵𝐽𝐵𝑋 ) )
10 9 adantr ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ) → ( 𝐵𝐽𝐵𝑋 ) )
11 10 ralimdv ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ) → ( ∀ 𝑥𝐴 𝐵𝐽 → ∀ 𝑥𝐴 𝐵𝑋 ) )
12 11 3impia ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵𝐽 ) → ∀ 𝑥𝐴 𝐵𝑋 )
13 riinn0 ( ( ∀ 𝑥𝐴 𝐵𝑋𝐴 ≠ ∅ ) → ( 𝑋 𝑥𝐴 𝐵 ) = 𝑥𝐴 𝐵 )
14 12 13 sylan ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵𝐽 ) ∧ 𝐴 ≠ ∅ ) → ( 𝑋 𝑥𝐴 𝐵 ) = 𝑥𝐴 𝐵 )
15 iinopn ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵𝐽 ) ) → 𝑥𝐴 𝐵𝐽 )
16 15 3exp2 ( 𝐽 ∈ Top → ( 𝐴 ∈ Fin → ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 𝐵𝐽 𝑥𝐴 𝐵𝐽 ) ) ) )
17 16 com34 ( 𝐽 ∈ Top → ( 𝐴 ∈ Fin → ( ∀ 𝑥𝐴 𝐵𝐽 → ( 𝐴 ≠ ∅ → 𝑥𝐴 𝐵𝐽 ) ) ) )
18 17 3imp1 ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵𝐽 ) ∧ 𝐴 ≠ ∅ ) → 𝑥𝐴 𝐵𝐽 )
19 14 18 eqeltrd ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵𝐽 ) ∧ 𝐴 ≠ ∅ ) → ( 𝑋 𝑥𝐴 𝐵 ) ∈ 𝐽 )
20 7 19 pm2.61dane ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵𝐽 ) → ( 𝑋 𝑥𝐴 𝐵 ) ∈ 𝐽 )