| Step | Hyp | Ref | Expression | 
						
							| 1 |  | riin0 | ⊢ ( 𝑋  =  ∅  →  ( 𝐴  ∩  ∩  𝑥  ∈  𝑋 { 𝑦  ∈  𝐴  ∣  𝜑 } )  =  𝐴 ) | 
						
							| 2 |  | rzal | ⊢ ( 𝑋  =  ∅  →  ∀ 𝑥  ∈  𝑋 𝜑 ) | 
						
							| 3 | 2 | ralrimivw | ⊢ ( 𝑋  =  ∅  →  ∀ 𝑦  ∈  𝐴 ∀ 𝑥  ∈  𝑋 𝜑 ) | 
						
							| 4 |  | rabid2 | ⊢ ( 𝐴  =  { 𝑦  ∈  𝐴  ∣  ∀ 𝑥  ∈  𝑋 𝜑 }  ↔  ∀ 𝑦  ∈  𝐴 ∀ 𝑥  ∈  𝑋 𝜑 ) | 
						
							| 5 | 3 4 | sylibr | ⊢ ( 𝑋  =  ∅  →  𝐴  =  { 𝑦  ∈  𝐴  ∣  ∀ 𝑥  ∈  𝑋 𝜑 } ) | 
						
							| 6 | 1 5 | eqtrd | ⊢ ( 𝑋  =  ∅  →  ( 𝐴  ∩  ∩  𝑥  ∈  𝑋 { 𝑦  ∈  𝐴  ∣  𝜑 } )  =  { 𝑦  ∈  𝐴  ∣  ∀ 𝑥  ∈  𝑋 𝜑 } ) | 
						
							| 7 |  | ssrab2 | ⊢ { 𝑦  ∈  𝐴  ∣  𝜑 }  ⊆  𝐴 | 
						
							| 8 | 7 | rgenw | ⊢ ∀ 𝑥  ∈  𝑋 { 𝑦  ∈  𝐴  ∣  𝜑 }  ⊆  𝐴 | 
						
							| 9 |  | riinn0 | ⊢ ( ( ∀ 𝑥  ∈  𝑋 { 𝑦  ∈  𝐴  ∣  𝜑 }  ⊆  𝐴  ∧  𝑋  ≠  ∅ )  →  ( 𝐴  ∩  ∩  𝑥  ∈  𝑋 { 𝑦  ∈  𝐴  ∣  𝜑 } )  =  ∩  𝑥  ∈  𝑋 { 𝑦  ∈  𝐴  ∣  𝜑 } ) | 
						
							| 10 | 8 9 | mpan | ⊢ ( 𝑋  ≠  ∅  →  ( 𝐴  ∩  ∩  𝑥  ∈  𝑋 { 𝑦  ∈  𝐴  ∣  𝜑 } )  =  ∩  𝑥  ∈  𝑋 { 𝑦  ∈  𝐴  ∣  𝜑 } ) | 
						
							| 11 |  | iinrab | ⊢ ( 𝑋  ≠  ∅  →  ∩  𝑥  ∈  𝑋 { 𝑦  ∈  𝐴  ∣  𝜑 }  =  { 𝑦  ∈  𝐴  ∣  ∀ 𝑥  ∈  𝑋 𝜑 } ) | 
						
							| 12 | 10 11 | eqtrd | ⊢ ( 𝑋  ≠  ∅  →  ( 𝐴  ∩  ∩  𝑥  ∈  𝑋 { 𝑦  ∈  𝐴  ∣  𝜑 } )  =  { 𝑦  ∈  𝐴  ∣  ∀ 𝑥  ∈  𝑋 𝜑 } ) | 
						
							| 13 | 6 12 | pm2.61ine | ⊢ ( 𝐴  ∩  ∩  𝑥  ∈  𝑋 { 𝑦  ∈  𝐴  ∣  𝜑 } )  =  { 𝑦  ∈  𝐴  ∣  ∀ 𝑥  ∈  𝑋 𝜑 } |