Step |
Hyp |
Ref |
Expression |
1 |
|
riin0 |
⊢ ( 𝑋 = ∅ → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) = 𝐴 ) |
2 |
|
rzal |
⊢ ( 𝑋 = ∅ → ∀ 𝑥 ∈ 𝑋 𝜑 ) |
3 |
2
|
ralrimivw |
⊢ ( 𝑋 = ∅ → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝑋 𝜑 ) |
4 |
|
rabid2 |
⊢ ( 𝐴 = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑥 ∈ 𝑋 𝜑 } ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝑋 𝜑 ) |
5 |
3 4
|
sylibr |
⊢ ( 𝑋 = ∅ → 𝐴 = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑥 ∈ 𝑋 𝜑 } ) |
6 |
1 5
|
eqtrd |
⊢ ( 𝑋 = ∅ → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑥 ∈ 𝑋 𝜑 } ) |
7 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 |
8 |
7
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 |
9 |
|
riinn0 |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ∧ 𝑋 ≠ ∅ ) → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) = ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) |
10 |
8 9
|
mpan |
⊢ ( 𝑋 ≠ ∅ → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) = ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) |
11 |
|
iinrab |
⊢ ( 𝑋 ≠ ∅ → ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑥 ∈ 𝑋 𝜑 } ) |
12 |
10 11
|
eqtrd |
⊢ ( 𝑋 ≠ ∅ → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑥 ∈ 𝑋 𝜑 } ) |
13 |
6 12
|
pm2.61ine |
⊢ ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑥 ∈ 𝑋 𝜑 } |