Metamath Proof Explorer
		
		
		
		Description:  An isomorphism of rings is a bijection.  (Contributed by AV, 22-Oct-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | rhmf1o.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
					
						|  |  | rhmf1o.c | ⊢ 𝐶  =  ( Base ‘ 𝑆 ) | 
				
					|  | Assertion | rimf1o | ⊢  ( 𝐹  ∈  ( 𝑅  RingIso  𝑆 )  →  𝐹 : 𝐵 –1-1-onto→ 𝐶 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmf1o.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | rhmf1o.c | ⊢ 𝐶  =  ( Base ‘ 𝑆 ) | 
						
							| 3 | 1 2 | isrim | ⊢ ( 𝐹  ∈  ( 𝑅  RingIso  𝑆 )  ↔  ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) | 
						
							| 4 | 3 | simprbi | ⊢ ( 𝐹  ∈  ( 𝑅  RingIso  𝑆 )  →  𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |