Description: An isomorphism of rings is a bijection. (Contributed by AV, 22-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rhmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
rhmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
Assertion | rimf1o | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
2 | rhmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
3 | rimrcl | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ) | |
4 | 1 2 | isrim | ⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) ) |
5 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) | |
6 | 4 5 | syl6bi | ⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
7 | 3 6 | mpcom | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |