Metamath Proof Explorer


Theorem rimgim

Description: An isomorphism of rings is an isomorphism of their additive groups. (Contributed by AV, 24-Dec-2019)

Ref Expression
Assertion rimgim ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
2 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
3 1 2 rimrhm ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )
4 rhmghm ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
5 3 4 syl ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
6 1 2 rimf1o ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) )
7 1 2 isgim ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) )
8 5 6 7 sylanbrc ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) )