| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rimrhm | ⊢ ( 𝐹  ∈  ( 𝑅  RingIso  𝑆 )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 2 |  | rhmghm | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐹  ∈  ( 𝑅  RingIso  𝑆 )  →  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 6 | 4 5 | rimf1o | ⊢ ( 𝐹  ∈  ( 𝑅  RingIso  𝑆 )  →  𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) | 
						
							| 7 | 4 5 | isgim | ⊢ ( 𝐹  ∈  ( 𝑅  GrpIso  𝑆 )  ↔  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) | 
						
							| 8 | 3 6 7 | sylanbrc | ⊢ ( 𝐹  ∈  ( 𝑅  RingIso  𝑆 )  →  𝐹  ∈  ( 𝑅  GrpIso  𝑆 ) ) |