Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
3 |
1 2
|
isrim |
⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) |
4 |
|
rhmisrnghm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) |
5 |
4
|
anim1i |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) → ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) |
6 |
3 5
|
sylbi |
⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) |
7 |
|
rimrcl |
⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ) |
8 |
1 2
|
isrngim2 |
⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) ) |
10 |
6 9
|
mpbird |
⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) |