Metamath Proof Explorer


Theorem rimrcl

Description: Reverse closure for an isomorphism of rings. (Contributed by AV, 22-Oct-2019)

Ref Expression
Assertion rimrcl ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) )

Proof

Step Hyp Ref Expression
1 df-rngiso RingIso = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RingHom 𝑠 ) ∣ 𝑓 ∈ ( 𝑠 RingHom 𝑟 ) } )
2 1 elmpocl ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) )