Description: A ring isomorphism is a homomorphism. Compare gimghm . (Contributed by AV, 22-Oct-2019) Remove hypotheses. (Revised by SN, 10-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rimrhm | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isrim0 | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |