Database BASIC ALGEBRAIC STRUCTURES Rings Ring homomorphisms rimrhmOLD  
				
		 
		
			
		 
		Description:   Obsolete version of rimrhm  as of 12-Jan-2025.  (Contributed by AV , 22-Oct-2019)   (Proof modification is discouraged.) 
       (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						rhmf1o.b ⊢  𝐵   =  ( Base ‘ 𝑅  )  
					
						rhmf1o.c ⊢  𝐶   =  ( Base ‘ 𝑆  )  
				
					Assertion 
					rimrhmOLD ⊢   ( 𝐹   ∈  ( 𝑅   RingIso  𝑆  )  →  𝐹   ∈  ( 𝑅   RingHom  𝑆  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							rhmf1o.b ⊢  𝐵   =  ( Base ‘ 𝑅  )  
						
							2 
								
							 
							rhmf1o.c ⊢  𝐶   =  ( Base ‘ 𝑆  )  
						
							3 
								1  2 
							 
							isrim ⊢  ( 𝐹   ∈  ( 𝑅   RingIso  𝑆  )  ↔  ( 𝐹   ∈  ( 𝑅   RingHom  𝑆  )  ∧  𝐹  : 𝐵  –1-1 -onto → 𝐶  ) )  
						
							4 
								3 
							 
							simplbi ⊢  ( 𝐹   ∈  ( 𝑅   RingIso  𝑆  )  →  𝐹   ∈  ( 𝑅   RingHom  𝑆  ) )