| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ring1eq0.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | ring1eq0.u | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 3 |  | ring1eq0.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | simpr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧   1   =   0  )  →   1   =   0  ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧   1   =   0  )  →  (  1  ( .r ‘ 𝑅 ) 𝑋 )  =  (  0  ( .r ‘ 𝑅 ) 𝑋 ) ) | 
						
							| 6 | 4 | oveq1d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧   1   =   0  )  →  (  1  ( .r ‘ 𝑅 ) 𝑌 )  =  (  0  ( .r ‘ 𝑅 ) 𝑌 ) ) | 
						
							| 7 |  | simpl1 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧   1   =   0  )  →  𝑅  ∈  Ring ) | 
						
							| 8 |  | simpl2 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧   1   =   0  )  →  𝑋  ∈  𝐵 ) | 
						
							| 9 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 10 | 1 9 3 | ringlz | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  (  0  ( .r ‘ 𝑅 ) 𝑋 )  =   0  ) | 
						
							| 11 | 7 8 10 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧   1   =   0  )  →  (  0  ( .r ‘ 𝑅 ) 𝑋 )  =   0  ) | 
						
							| 12 |  | simpl3 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧   1   =   0  )  →  𝑌  ∈  𝐵 ) | 
						
							| 13 | 1 9 3 | ringlz | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑌  ∈  𝐵 )  →  (  0  ( .r ‘ 𝑅 ) 𝑌 )  =   0  ) | 
						
							| 14 | 7 12 13 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧   1   =   0  )  →  (  0  ( .r ‘ 𝑅 ) 𝑌 )  =   0  ) | 
						
							| 15 | 11 14 | eqtr4d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧   1   =   0  )  →  (  0  ( .r ‘ 𝑅 ) 𝑋 )  =  (  0  ( .r ‘ 𝑅 ) 𝑌 ) ) | 
						
							| 16 | 6 15 | eqtr4d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧   1   =   0  )  →  (  1  ( .r ‘ 𝑅 ) 𝑌 )  =  (  0  ( .r ‘ 𝑅 ) 𝑋 ) ) | 
						
							| 17 | 5 16 | eqtr4d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧   1   =   0  )  →  (  1  ( .r ‘ 𝑅 ) 𝑋 )  =  (  1  ( .r ‘ 𝑅 ) 𝑌 ) ) | 
						
							| 18 | 1 9 2 | ringlidm | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  (  1  ( .r ‘ 𝑅 ) 𝑋 )  =  𝑋 ) | 
						
							| 19 | 7 8 18 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧   1   =   0  )  →  (  1  ( .r ‘ 𝑅 ) 𝑋 )  =  𝑋 ) | 
						
							| 20 | 1 9 2 | ringlidm | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑌  ∈  𝐵 )  →  (  1  ( .r ‘ 𝑅 ) 𝑌 )  =  𝑌 ) | 
						
							| 21 | 7 12 20 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧   1   =   0  )  →  (  1  ( .r ‘ 𝑅 ) 𝑌 )  =  𝑌 ) | 
						
							| 22 | 17 19 21 | 3eqtr3d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧   1   =   0  )  →  𝑋  =  𝑌 ) | 
						
							| 23 | 22 | ex | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  1   =   0   →  𝑋  =  𝑌 ) ) |