| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ring1eq0.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
ring1eq0.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 3 |
|
ring1eq0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → 1 = 0 ) |
| 5 |
4
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 1 ( .r ‘ 𝑅 ) 𝑋 ) = ( 0 ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 6 |
4
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 1 ( .r ‘ 𝑅 ) 𝑌 ) = ( 0 ( .r ‘ 𝑅 ) 𝑌 ) ) |
| 7 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → 𝑅 ∈ Ring ) |
| 8 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → 𝑋 ∈ 𝐵 ) |
| 9 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 10 |
1 9 3
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) |
| 11 |
7 8 10
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 0 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) |
| 12 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → 𝑌 ∈ 𝐵 ) |
| 13 |
1 9 3
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( 0 ( .r ‘ 𝑅 ) 𝑌 ) = 0 ) |
| 14 |
7 12 13
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 0 ( .r ‘ 𝑅 ) 𝑌 ) = 0 ) |
| 15 |
11 14
|
eqtr4d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 0 ( .r ‘ 𝑅 ) 𝑋 ) = ( 0 ( .r ‘ 𝑅 ) 𝑌 ) ) |
| 16 |
6 15
|
eqtr4d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 1 ( .r ‘ 𝑅 ) 𝑌 ) = ( 0 ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 17 |
5 16
|
eqtr4d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 1 ( .r ‘ 𝑅 ) 𝑋 ) = ( 1 ( .r ‘ 𝑅 ) 𝑌 ) ) |
| 18 |
1 9 2
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑋 ) |
| 19 |
7 8 18
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 1 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑋 ) |
| 20 |
1 9 2
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑌 ) |
| 21 |
7 12 20
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 1 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑌 ) |
| 22 |
17 19 21
|
3eqtr3d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → 𝑋 = 𝑌 ) |
| 23 |
22
|
ex |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 1 = 0 → 𝑋 = 𝑌 ) ) |