Step |
Hyp |
Ref |
Expression |
1 |
|
ring1ne0.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ring1ne0.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
ring1ne0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
5 |
|
hashgt12el |
⊢ ( ( 𝐵 ∈ V ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 ) |
6 |
4 5
|
mpan |
⊢ ( 1 < ( ♯ ‘ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 ) |
7 |
6
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 ) |
8 |
1 2 3
|
ring1eq0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 1 = 0 → 𝑥 = 𝑦 ) ) |
9 |
8
|
necon3d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≠ 𝑦 → 1 ≠ 0 ) ) |
10 |
9
|
3expib |
⊢ ( 𝑅 ∈ Ring → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≠ 𝑦 → 1 ≠ 0 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≠ 𝑦 → 1 ≠ 0 ) ) ) |
12 |
11
|
com3l |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≠ 𝑦 → ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 1 ≠ 0 ) ) ) |
13 |
12
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 → ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 1 ≠ 0 ) ) |
14 |
7 13
|
mpcom |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 1 ≠ 0 ) |