| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ring1ne0.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | ring1ne0.u | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 3 |  | ring1ne0.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 5 |  | hashgt12el | ⊢ ( ( 𝐵  ∈  V  ∧  1  <  ( ♯ ‘ 𝐵 ) )  →  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑥  ≠  𝑦 ) | 
						
							| 6 | 4 5 | mpan | ⊢ ( 1  <  ( ♯ ‘ 𝐵 )  →  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑥  ≠  𝑦 ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑅  ∈  Ring  ∧  1  <  ( ♯ ‘ 𝐵 ) )  →  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑥  ≠  𝑦 ) | 
						
							| 8 | 1 2 3 | ring1eq0 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  (  1   =   0   →  𝑥  =  𝑦 ) ) | 
						
							| 9 | 8 | necon3d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  ≠  𝑦  →   1   ≠   0  ) ) | 
						
							| 10 | 9 | 3expib | ⊢ ( 𝑅  ∈  Ring  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  ≠  𝑦  →   1   ≠   0  ) ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  1  <  ( ♯ ‘ 𝐵 ) )  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  ≠  𝑦  →   1   ≠   0  ) ) ) | 
						
							| 12 | 11 | com3l | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  ≠  𝑦  →  ( ( 𝑅  ∈  Ring  ∧  1  <  ( ♯ ‘ 𝐵 ) )  →   1   ≠   0  ) ) ) | 
						
							| 13 | 12 | rexlimivv | ⊢ ( ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑥  ≠  𝑦  →  ( ( 𝑅  ∈  Ring  ∧  1  <  ( ♯ ‘ 𝐵 ) )  →   1   ≠   0  ) ) | 
						
							| 14 | 7 13 | mpcom | ⊢ ( ( 𝑅  ∈  Ring  ∧  1  <  ( ♯ ‘ 𝐵 ) )  →   1   ≠   0  ) |