Metamath Proof Explorer


Theorem ring1ne0

Description: If a ring has at least two elements, its one and zero are different. (Contributed by AV, 13-Apr-2019)

Ref Expression
Hypotheses ring1ne0.b 𝐵 = ( Base ‘ 𝑅 )
ring1ne0.u 1 = ( 1r𝑅 )
ring1ne0.z 0 = ( 0g𝑅 )
Assertion ring1ne0 ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 10 )

Proof

Step Hyp Ref Expression
1 ring1ne0.b 𝐵 = ( Base ‘ 𝑅 )
2 ring1ne0.u 1 = ( 1r𝑅 )
3 ring1ne0.z 0 = ( 0g𝑅 )
4 1 fvexi 𝐵 ∈ V
5 hashgt12el ( ( 𝐵 ∈ V ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑥𝐵𝑦𝐵 𝑥𝑦 )
6 4 5 mpan ( 1 < ( ♯ ‘ 𝐵 ) → ∃ 𝑥𝐵𝑦𝐵 𝑥𝑦 )
7 6 adantl ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑥𝐵𝑦𝐵 𝑥𝑦 )
8 1 2 3 ring1eq0 ( ( 𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵 ) → ( 1 = 0𝑥 = 𝑦 ) )
9 8 necon3d ( ( 𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝑥𝑦10 ) )
10 9 3expib ( 𝑅 ∈ Ring → ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥𝑦10 ) ) )
11 10 adantr ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥𝑦10 ) ) )
12 11 com3l ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥𝑦 → ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 10 ) ) )
13 12 rexlimivv ( ∃ 𝑥𝐵𝑦𝐵 𝑥𝑦 → ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 10 ) )
14 7 13 mpcom ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 10 )