Metamath Proof Explorer
Description: In a unitary ring, the ring unity is not a zero divisor. (Contributed by AV, 7-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
ringunitnzdiv.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
ringunitnzdiv.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
|
|
ringunitnzdiv.t |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
ringunitnzdiv.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
|
|
ringunitnzdiv.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
ring1nzdiv.x |
⊢ 1 = ( 1r ‘ 𝑅 ) |
|
Assertion |
ring1nzdiv |
⊢ ( 𝜑 → ( ( 1 · 𝑌 ) = 0 ↔ 𝑌 = 0 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ringunitnzdiv.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringunitnzdiv.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
ringunitnzdiv.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
ringunitnzdiv.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
ringunitnzdiv.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
ring1nzdiv.x |
⊢ 1 = ( 1r ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
8 |
7 6
|
1unit |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Unit ‘ 𝑅 ) ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → 1 ∈ ( Unit ‘ 𝑅 ) ) |
10 |
1 2 3 4 5 9
|
ringunitnzdiv |
⊢ ( 𝜑 → ( ( 1 · 𝑌 ) = 0 ↔ 𝑌 = 0 ) ) |