| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringadd2.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | ringadd2.p | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 3 |  | ringadd2.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 5 | 1 4 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 7 |  | simpr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  =  ( 1r ‘ 𝑅 ) )  →  𝑥  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 8 | 7 7 | oveq12d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  =  ( 1r ‘ 𝑅 ) )  →  ( 𝑥  +  𝑥 )  =  ( ( 1r ‘ 𝑅 )  +  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  =  ( 1r ‘ 𝑅 ) )  →  ( ( 𝑥  +  𝑥 )  ·  𝑋 )  =  ( ( ( 1r ‘ 𝑅 )  +  ( 1r ‘ 𝑅 ) )  ·  𝑋 ) ) | 
						
							| 10 | 9 | eqeq2d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  =  ( 1r ‘ 𝑅 ) )  →  ( ( 𝑋  +  𝑋 )  =  ( ( 𝑥  +  𝑥 )  ·  𝑋 )  ↔  ( 𝑋  +  𝑋 )  =  ( ( ( 1r ‘ 𝑅 )  +  ( 1r ‘ 𝑅 ) )  ·  𝑋 ) ) ) | 
						
							| 11 | 1 2 3 4 | ringo2times | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  +  𝑋 )  =  ( ( ( 1r ‘ 𝑅 )  +  ( 1r ‘ 𝑅 ) )  ·  𝑋 ) ) | 
						
							| 12 | 6 10 11 | rspcedvd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ∃ 𝑥  ∈  𝐵 ( 𝑋  +  𝑋 )  =  ( ( 𝑥  +  𝑥 )  ·  𝑋 ) ) |