Step |
Hyp |
Ref |
Expression |
1 |
|
ringadd2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringadd2.p |
⊢ + = ( +g ‘ 𝑅 ) |
3 |
|
ringadd2.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
5 |
1 4
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
6 |
5
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
7 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 = ( 1r ‘ 𝑅 ) ) → 𝑥 = ( 1r ‘ 𝑅 ) ) |
8 |
7 7
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 = ( 1r ‘ 𝑅 ) ) → ( 𝑥 + 𝑥 ) = ( ( 1r ‘ 𝑅 ) + ( 1r ‘ 𝑅 ) ) ) |
9 |
8
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 = ( 1r ‘ 𝑅 ) ) → ( ( 𝑥 + 𝑥 ) · 𝑋 ) = ( ( ( 1r ‘ 𝑅 ) + ( 1r ‘ 𝑅 ) ) · 𝑋 ) ) |
10 |
9
|
eqeq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 = ( 1r ‘ 𝑅 ) ) → ( ( 𝑋 + 𝑋 ) = ( ( 𝑥 + 𝑥 ) · 𝑋 ) ↔ ( 𝑋 + 𝑋 ) = ( ( ( 1r ‘ 𝑅 ) + ( 1r ‘ 𝑅 ) ) · 𝑋 ) ) ) |
11 |
1 2 3 4
|
ringo2times |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + 𝑋 ) = ( ( ( 1r ‘ 𝑅 ) + ( 1r ‘ 𝑅 ) ) · 𝑋 ) ) |
12 |
6 10 11
|
rspcedvd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ( 𝑋 + 𝑋 ) = ( ( 𝑥 + 𝑥 ) · 𝑋 ) ) |