Metamath Proof Explorer


Theorem ringadd2

Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (Revised by AV, 24-Aug-2021)

Ref Expression
Hypotheses ringadd2.b 𝐵 = ( Base ‘ 𝑅 )
ringadd2.p + = ( +g𝑅 )
ringadd2.t · = ( .r𝑅 )
Assertion ringadd2 ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ∃ 𝑥𝐵 ( 𝑋 + 𝑋 ) = ( ( 𝑥 + 𝑥 ) · 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ringadd2.b 𝐵 = ( Base ‘ 𝑅 )
2 ringadd2.p + = ( +g𝑅 )
3 ringadd2.t · = ( .r𝑅 )
4 1 3 ringid ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ∃ 𝑥𝐵 ( ( 𝑥 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 𝑥 ) = 𝑋 ) )
5 oveq12 ( ( ( 𝑥 · 𝑋 ) = 𝑋 ∧ ( 𝑥 · 𝑋 ) = 𝑋 ) → ( ( 𝑥 · 𝑋 ) + ( 𝑥 · 𝑋 ) ) = ( 𝑋 + 𝑋 ) )
6 5 anidms ( ( 𝑥 · 𝑋 ) = 𝑋 → ( ( 𝑥 · 𝑋 ) + ( 𝑥 · 𝑋 ) ) = ( 𝑋 + 𝑋 ) )
7 6 eqcomd ( ( 𝑥 · 𝑋 ) = 𝑋 → ( 𝑋 + 𝑋 ) = ( ( 𝑥 · 𝑋 ) + ( 𝑥 · 𝑋 ) ) )
8 simpll ( ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) ∧ 𝑥𝐵 ) → 𝑅 ∈ Ring )
9 simpr ( ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) ∧ 𝑥𝐵 ) → 𝑥𝐵 )
10 simplr ( ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) ∧ 𝑥𝐵 ) → 𝑋𝐵 )
11 1 2 3 ringdir ( ( 𝑅 ∈ Ring ∧ ( 𝑥𝐵𝑥𝐵𝑋𝐵 ) ) → ( ( 𝑥 + 𝑥 ) · 𝑋 ) = ( ( 𝑥 · 𝑋 ) + ( 𝑥 · 𝑋 ) ) )
12 8 9 9 10 11 syl13anc ( ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) ∧ 𝑥𝐵 ) → ( ( 𝑥 + 𝑥 ) · 𝑋 ) = ( ( 𝑥 · 𝑋 ) + ( 𝑥 · 𝑋 ) ) )
13 12 eqeq2d ( ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) ∧ 𝑥𝐵 ) → ( ( 𝑋 + 𝑋 ) = ( ( 𝑥 + 𝑥 ) · 𝑋 ) ↔ ( 𝑋 + 𝑋 ) = ( ( 𝑥 · 𝑋 ) + ( 𝑥 · 𝑋 ) ) ) )
14 7 13 syl5ibr ( ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) ∧ 𝑥𝐵 ) → ( ( 𝑥 · 𝑋 ) = 𝑋 → ( 𝑋 + 𝑋 ) = ( ( 𝑥 + 𝑥 ) · 𝑋 ) ) )
15 14 adantrd ( ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) ∧ 𝑥𝐵 ) → ( ( ( 𝑥 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 𝑥 ) = 𝑋 ) → ( 𝑋 + 𝑋 ) = ( ( 𝑥 + 𝑥 ) · 𝑋 ) ) )
16 15 reximdva ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( ∃ 𝑥𝐵 ( ( 𝑥 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 𝑥 ) = 𝑋 ) → ∃ 𝑥𝐵 ( 𝑋 + 𝑋 ) = ( ( 𝑥 + 𝑥 ) · 𝑋 ) ) )
17 4 16 mpd ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ∃ 𝑥𝐵 ( 𝑋 + 𝑋 ) = ( ( 𝑥 + 𝑥 ) · 𝑋 ) )