Metamath Proof Explorer
		
		
		
		Description:  Associative law for multiplication in a ring.  (Contributed by SN, 14-Aug-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ringassd.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
					
						|  |  | ringassd.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
					
						|  |  | ringassd.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
					
						|  |  | ringassd.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
					
						|  |  | ringassd.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
					
						|  |  | ringassd.z | ⊢ ( 𝜑  →  𝑍  ∈  𝐵 ) | 
				
					|  | Assertion | ringassd | ⊢  ( 𝜑  →  ( ( 𝑋  ·  𝑌 )  ·  𝑍 )  =  ( 𝑋  ·  ( 𝑌  ·  𝑍 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringassd.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | ringassd.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | ringassd.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 4 |  | ringassd.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | ringassd.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 6 |  | ringassd.z | ⊢ ( 𝜑  →  𝑍  ∈  𝐵 ) | 
						
							| 7 | 1 2 | ringass | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  ·  𝑌 )  ·  𝑍 )  =  ( 𝑋  ·  ( 𝑌  ·  𝑍 ) ) ) | 
						
							| 8 | 3 4 5 6 7 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑋  ·  𝑌 )  ·  𝑍 )  =  ( 𝑋  ·  ( 𝑌  ·  𝑍 ) ) ) |