| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringccat.c | ⊢ 𝐶  =  ( RingCat ‘ 𝑈 ) | 
						
							| 2 |  | id | ⊢ ( 𝑈  ∈  𝑉  →  𝑈  ∈  𝑉 ) | 
						
							| 3 |  | eqidd | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝑈  ∩  Ring )  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 4 |  | eqidd | ⊢ ( 𝑈  ∈  𝑉  →  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) )  =  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) ) | 
						
							| 5 | 1 2 3 4 | ringcval | ⊢ ( 𝑈  ∈  𝑉  →  𝐶  =  ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) )  =  ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( ExtStrCat ‘ 𝑈 )  =  ( ExtStrCat ‘ 𝑈 ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝑈  ∈  𝑉  →  ( Ring  ∩  𝑈 )  =  ( Ring  ∩  𝑈 ) ) | 
						
							| 9 |  | incom | ⊢ ( 𝑈  ∩  Ring )  =  ( Ring  ∩  𝑈 ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝑈  ∩  Ring )  =  ( Ring  ∩  𝑈 ) ) | 
						
							| 11 | 10 | sqxpeqd | ⊢ ( 𝑈  ∈  𝑉  →  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) )  =  ( ( Ring  ∩  𝑈 )  ×  ( Ring  ∩  𝑈 ) ) ) | 
						
							| 12 | 11 | reseq2d | ⊢ ( 𝑈  ∈  𝑉  →  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) )  =  (  RingHom   ↾  ( ( Ring  ∩  𝑈 )  ×  ( Ring  ∩  𝑈 ) ) ) ) | 
						
							| 13 | 7 2 8 12 | rhmsubcsetc | ⊢ ( 𝑈  ∈  𝑉  →  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) )  ∈  ( Subcat ‘ ( ExtStrCat ‘ 𝑈 ) ) ) | 
						
							| 14 | 6 13 | subccat | ⊢ ( 𝑈  ∈  𝑉  →  ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) )  ∈  Cat ) | 
						
							| 15 | 5 14 | eqeltrd | ⊢ ( 𝑈  ∈  𝑉  →  𝐶  ∈  Cat ) |