| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringcco.c |
⊢ 𝐶 = ( RingCat ‘ 𝑈 ) |
| 2 |
|
ringcco.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 3 |
|
ringcco.o |
⊢ · = ( comp ‘ 𝐶 ) |
| 4 |
|
ringcco.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 5 |
|
ringcco.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
| 6 |
|
ringcco.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
| 7 |
|
ringcco.f |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 8 |
|
ringcco.g |
⊢ ( 𝜑 → 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) |
| 9 |
1 2 3
|
ringccofval |
⊢ ( 𝜑 → · = ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 10 |
9
|
oveqd |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) 𝑍 ) ) |
| 11 |
10
|
oveqd |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) 𝑍 ) 𝐹 ) ) |
| 12 |
|
eqid |
⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) |
| 13 |
|
eqid |
⊢ ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
| 17 |
12 2 13 4 5 6 14 15 16 7 8
|
estrcco |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) 𝑍 ) 𝐹 ) = ( 𝐺 ∘ 𝐹 ) ) |
| 18 |
11 17
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ∘ 𝐹 ) ) |