Description: Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcbas.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| ringcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| ringcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| ringchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| ringchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ringchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | ringchom | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ringcbas.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| 2 | ringcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | ringcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 4 | ringchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | ringchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | ringchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | 1 2 3 4 | ringchomfval | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | 
| 8 | 7 | oveqd | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑌 ) ) | 
| 9 | 5 6 | ovresd | ⊢ ( 𝜑 → ( 𝑋 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) | 
| 10 | 8 9 | eqtrd | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |