Description: The functionalized Hom-set operation equals the Hom-set operation in the category of unital rings (in a universe). (Contributed by AV, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcbas.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| ringcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| ringcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| Assertion | ringchomfeqhom | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcbas.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| 2 | ringcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | ringcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 4 | 1 2 3 | ringcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) |
| 5 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 6 | 1 2 3 5 | ringchomfval | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
| 7 | 4 6 | rhmresfn | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) ) |
| 8 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 9 | 8 2 5 | fnhomeqhomf | ⊢ ( ( Hom ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) → ( Homf ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
| 10 | 7 9 | syl | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |