| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringcbas.c | ⊢ 𝐶  =  ( RingCat ‘ 𝑈 ) | 
						
							| 2 |  | ringcbas.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | ringcbas.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 4 |  | ringchomfval.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 5 | 1 2 3 | ringcbas | ⊢ ( 𝜑  →  𝐵  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝜑  →  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) )  =  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 7 | 1 3 5 6 | ringcval | ⊢ ( 𝜑  →  𝐶  =  ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝜑  →  ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) ) ) | 
						
							| 9 | 4 8 | eqtrid | ⊢ ( 𝜑  →  𝐻  =  ( Hom  ‘ ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) )  =  ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) )  =  ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) | 
						
							| 12 |  | fvexd | ⊢ ( 𝜑  →  ( ExtStrCat ‘ 𝑈 )  ∈  V ) | 
						
							| 13 | 5 6 | rhmresfn | ⊢ ( 𝜑  →  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) )  Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 14 |  | inss1 | ⊢ ( 𝑈  ∩  Ring )  ⊆  𝑈 | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ( 𝑈  ∩  Ring )  ⊆  𝑈 ) | 
						
							| 16 |  | eqid | ⊢ ( ExtStrCat ‘ 𝑈 )  =  ( ExtStrCat ‘ 𝑈 ) | 
						
							| 17 | 16 3 | estrcbas | ⊢ ( 𝜑  →  𝑈  =  ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) | 
						
							| 18 | 17 | eqcomd | ⊢ ( 𝜑  →  ( Base ‘ ( ExtStrCat ‘ 𝑈 ) )  =  𝑈 ) | 
						
							| 19 | 15 5 18 | 3sstr4d | ⊢ ( 𝜑  →  𝐵  ⊆  ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) | 
						
							| 20 | 10 11 12 13 19 | reschom | ⊢ ( 𝜑  →  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) )  =  ( Hom  ‘ ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) ) ) | 
						
							| 21 | 9 20 | eqtr4d | ⊢ ( 𝜑  →  𝐻  =  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) |