| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringccat.c | ⊢ 𝐶  =  ( RingCat ‘ 𝑈 ) | 
						
							| 2 |  | ringcid.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | ringcid.o | ⊢  1   =  ( Id ‘ 𝐶 ) | 
						
							| 4 |  | ringcid.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 5 |  | ringcid.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | ringcid.s | ⊢ 𝑆  =  ( Base ‘ 𝑋 ) | 
						
							| 7 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑈  ∩  Ring )  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝜑  →  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) )  =  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) ) | 
						
							| 9 | 1 4 7 8 | ringcval | ⊢ ( 𝜑  →  𝐶  =  ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝜑  →  ( Id ‘ 𝐶 )  =  ( Id ‘ ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) ) ) ) | 
						
							| 11 | 3 10 | eqtrid | ⊢ ( 𝜑  →   1   =  ( Id ‘ ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) ) ) ) | 
						
							| 12 | 11 | fveq1d | ⊢ ( 𝜑  →  (  1  ‘ 𝑋 )  =  ( ( Id ‘ ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) ) ) ‘ 𝑋 ) ) | 
						
							| 13 |  | eqid | ⊢ ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) )  =  ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( ExtStrCat ‘ 𝑈 )  =  ( ExtStrCat ‘ 𝑈 ) | 
						
							| 15 |  | incom | ⊢ ( 𝑈  ∩  Ring )  =  ( Ring  ∩  𝑈 ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ( 𝑈  ∩  Ring )  =  ( Ring  ∩  𝑈 ) ) | 
						
							| 17 | 14 4 16 8 | rhmsubcsetc | ⊢ ( 𝜑  →  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) )  ∈  ( Subcat ‘ ( ExtStrCat ‘ 𝑈 ) ) ) | 
						
							| 18 | 7 8 | rhmresfn | ⊢ ( 𝜑  →  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) )  Fn  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( Id ‘ ( ExtStrCat ‘ 𝑈 ) )  =  ( Id ‘ ( ExtStrCat ‘ 𝑈 ) ) | 
						
							| 20 | 1 2 4 | ringcbas | ⊢ ( 𝜑  →  𝐵  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 21 | 20 | eleq2d | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐵  ↔  𝑋  ∈  ( 𝑈  ∩  Ring ) ) ) | 
						
							| 22 | 5 21 | mpbid | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑈  ∩  Ring ) ) | 
						
							| 23 | 13 17 18 19 22 | subcid | ⊢ ( 𝜑  →  ( ( Id ‘ ( ExtStrCat ‘ 𝑈 ) ) ‘ 𝑋 )  =  ( ( Id ‘ ( ( ExtStrCat ‘ 𝑈 )  ↾cat  (  RingHom   ↾  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) ) ) ‘ 𝑋 ) ) | 
						
							| 24 |  | elinel1 | ⊢ ( 𝑋  ∈  ( 𝑈  ∩  Ring )  →  𝑋  ∈  𝑈 ) | 
						
							| 25 | 21 24 | biimtrdi | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐵  →  𝑋  ∈  𝑈 ) ) | 
						
							| 26 | 5 25 | mpd | ⊢ ( 𝜑  →  𝑋  ∈  𝑈 ) | 
						
							| 27 | 14 19 4 26 | estrcid | ⊢ ( 𝜑  →  ( ( Id ‘ ( ExtStrCat ‘ 𝑈 ) ) ‘ 𝑋 )  =  (  I   ↾  ( Base ‘ 𝑋 ) ) ) | 
						
							| 28 | 6 | eqcomi | ⊢ ( Base ‘ 𝑋 )  =  𝑆 | 
						
							| 29 | 28 | a1i | ⊢ ( 𝜑  →  ( Base ‘ 𝑋 )  =  𝑆 ) | 
						
							| 30 | 29 | reseq2d | ⊢ ( 𝜑  →  (  I   ↾  ( Base ‘ 𝑋 ) )  =  (  I   ↾  𝑆 ) ) | 
						
							| 31 | 27 30 | eqtrd | ⊢ ( 𝜑  →  ( ( Id ‘ ( ExtStrCat ‘ 𝑈 ) ) ‘ 𝑋 )  =  (  I   ↾  𝑆 ) ) | 
						
							| 32 | 12 23 31 | 3eqtr2d | ⊢ ( 𝜑  →  (  1  ‘ 𝑋 )  =  (  I   ↾  𝑆 ) ) |