| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringcval.c | ⊢ 𝐶  =  ( RingCat ‘ 𝑈 ) | 
						
							| 2 |  | ringcval.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 3 |  | ringcval.b | ⊢ ( 𝜑  →  𝐵  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 4 |  | ringcval.h | ⊢ ( 𝜑  →  𝐻  =  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 5 |  | df-ringc | ⊢ RingCat  =  ( 𝑢  ∈  V  ↦  ( ( ExtStrCat ‘ 𝑢 )  ↾cat  (  RingHom   ↾  ( ( 𝑢  ∩  Ring )  ×  ( 𝑢  ∩  Ring ) ) ) ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑢  =  𝑈  →  ( ExtStrCat ‘ 𝑢 )  =  ( ExtStrCat ‘ 𝑈 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  ( ExtStrCat ‘ 𝑢 )  =  ( ExtStrCat ‘ 𝑈 ) ) | 
						
							| 8 |  | ineq1 | ⊢ ( 𝑢  =  𝑈  →  ( 𝑢  ∩  Ring )  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 9 | 8 | sqxpeqd | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝑢  ∩  Ring )  ×  ( 𝑢  ∩  Ring ) )  =  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) | 
						
							| 10 | 3 | sqxpeqd | ⊢ ( 𝜑  →  ( 𝐵  ×  𝐵 )  =  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) ) ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( 𝜑  →  ( ( 𝑈  ∩  Ring )  ×  ( 𝑈  ∩  Ring ) )  =  ( 𝐵  ×  𝐵 ) ) | 
						
							| 12 | 9 11 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  ( ( 𝑢  ∩  Ring )  ×  ( 𝑢  ∩  Ring ) )  =  ( 𝐵  ×  𝐵 ) ) | 
						
							| 13 | 12 | reseq2d | ⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  (  RingHom   ↾  ( ( 𝑢  ∩  Ring )  ×  ( 𝑢  ∩  Ring ) ) )  =  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 14 | 4 | eqcomd | ⊢ ( 𝜑  →  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) )  =  𝐻 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  (  RingHom   ↾  ( 𝐵  ×  𝐵 ) )  =  𝐻 ) | 
						
							| 16 | 13 15 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  (  RingHom   ↾  ( ( 𝑢  ∩  Ring )  ×  ( 𝑢  ∩  Ring ) ) )  =  𝐻 ) | 
						
							| 17 | 7 16 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  ( ( ExtStrCat ‘ 𝑢 )  ↾cat  (  RingHom   ↾  ( ( 𝑢  ∩  Ring )  ×  ( 𝑢  ∩  Ring ) ) ) )  =  ( ( ExtStrCat ‘ 𝑈 )  ↾cat  𝐻 ) ) | 
						
							| 18 | 2 | elexd | ⊢ ( 𝜑  →  𝑈  ∈  V ) | 
						
							| 19 |  | ovexd | ⊢ ( 𝜑  →  ( ( ExtStrCat ‘ 𝑈 )  ↾cat  𝐻 )  ∈  V ) | 
						
							| 20 | 5 17 18 19 | fvmptd2 | ⊢ ( 𝜑  →  ( RingCat ‘ 𝑈 )  =  ( ( ExtStrCat ‘ 𝑈 )  ↾cat  𝐻 ) ) | 
						
							| 21 | 1 20 | eqtrid | ⊢ ( 𝜑  →  𝐶  =  ( ( ExtStrCat ‘ 𝑈 )  ↾cat  𝐻 ) ) |