Metamath Proof Explorer


Theorem ringdid

Description: Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses ringdid.b 𝐵 = ( Base ‘ 𝑅 )
ringdid.p + = ( +g𝑅 )
ringdid.m · = ( .r𝑅 )
ringdid.r ( 𝜑𝑅 ∈ Ring )
ringdid.x ( 𝜑𝑋𝐵 )
ringdid.y ( 𝜑𝑌𝐵 )
ringdid.z ( 𝜑𝑍𝐵 )
Assertion ringdid ( 𝜑 → ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 ringdid.b 𝐵 = ( Base ‘ 𝑅 )
2 ringdid.p + = ( +g𝑅 )
3 ringdid.m · = ( .r𝑅 )
4 ringdid.r ( 𝜑𝑅 ∈ Ring )
5 ringdid.x ( 𝜑𝑋𝐵 )
6 ringdid.y ( 𝜑𝑌𝐵 )
7 ringdid.z ( 𝜑𝑍𝐵 )
8 1 2 3 ringdi ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) )
9 4 5 6 7 8 syl13anc ( 𝜑 → ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) )