Metamath Proof Explorer
Description: Distributive law for the multiplication operation of a ring
(left-distributivity). (Contributed by Thierry Arnoux, 4-May-2025)
|
|
Ref |
Expression |
|
Hypotheses |
ringdid.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
ringdid.p |
⊢ + = ( +g ‘ 𝑅 ) |
|
|
ringdid.m |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
ringdid.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
|
|
ringdid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
ringdid.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
ringdid.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
|
Assertion |
ringdid |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ringdid.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringdid.p |
⊢ + = ( +g ‘ 𝑅 ) |
3 |
|
ringdid.m |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
ringdid.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
ringdid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
ringdid.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
ringdid.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
8 |
1 2 3
|
ringdi |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ) |
9 |
4 5 6 7 8
|
syl13anc |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ) |