| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringid.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | ringid.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 4 | 1 3 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑢  =  ( 1r ‘ 𝑅 )  →  ( 𝑢  ·  𝑋 )  =  ( ( 1r ‘ 𝑅 )  ·  𝑋 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑢  =  ( 1r ‘ 𝑅 )  →  ( ( 𝑢  ·  𝑋 )  =  𝑋  ↔  ( ( 1r ‘ 𝑅 )  ·  𝑋 )  =  𝑋 ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑢  =  ( 1r ‘ 𝑅 )  →  ( 𝑋  ·  𝑢 )  =  ( 𝑋  ·  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 9 | 8 | eqeq1d | ⊢ ( 𝑢  =  ( 1r ‘ 𝑅 )  →  ( ( 𝑋  ·  𝑢 )  =  𝑋  ↔  ( 𝑋  ·  ( 1r ‘ 𝑅 ) )  =  𝑋 ) ) | 
						
							| 10 | 7 9 | anbi12d | ⊢ ( 𝑢  =  ( 1r ‘ 𝑅 )  →  ( ( ( 𝑢  ·  𝑋 )  =  𝑋  ∧  ( 𝑋  ·  𝑢 )  =  𝑋 )  ↔  ( ( ( 1r ‘ 𝑅 )  ·  𝑋 )  =  𝑋  ∧  ( 𝑋  ·  ( 1r ‘ 𝑅 ) )  =  𝑋 ) ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  ∧  𝑢  =  ( 1r ‘ 𝑅 ) )  →  ( ( ( 𝑢  ·  𝑋 )  =  𝑋  ∧  ( 𝑋  ·  𝑢 )  =  𝑋 )  ↔  ( ( ( 1r ‘ 𝑅 )  ·  𝑋 )  =  𝑋  ∧  ( 𝑋  ·  ( 1r ‘ 𝑅 ) )  =  𝑋 ) ) ) | 
						
							| 12 | 1 2 3 | ringidmlem | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( ( ( 1r ‘ 𝑅 )  ·  𝑋 )  =  𝑋  ∧  ( 𝑋  ·  ( 1r ‘ 𝑅 ) )  =  𝑋 ) ) | 
						
							| 13 | 5 11 12 | rspcedvd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ∃ 𝑢  ∈  𝐵 ( ( 𝑢  ·  𝑋 )  =  𝑋  ∧  ( 𝑋  ·  𝑢 )  =  𝑋 ) ) |