Metamath Proof Explorer


Theorem ringid

Description: The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (Revised by AV, 24-Aug-2021)

Ref Expression
Hypotheses ringid.b 𝐵 = ( Base ‘ 𝑅 )
ringid.t · = ( .r𝑅 )
Assertion ringid ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ∃ 𝑢𝐵 ( ( 𝑢 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 𝑢 ) = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ringid.b 𝐵 = ( Base ‘ 𝑅 )
2 ringid.t · = ( .r𝑅 )
3 eqid ( 1r𝑅 ) = ( 1r𝑅 )
4 1 3 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ 𝐵 )
5 4 adantr ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( 1r𝑅 ) ∈ 𝐵 )
6 oveq1 ( 𝑢 = ( 1r𝑅 ) → ( 𝑢 · 𝑋 ) = ( ( 1r𝑅 ) · 𝑋 ) )
7 6 eqeq1d ( 𝑢 = ( 1r𝑅 ) → ( ( 𝑢 · 𝑋 ) = 𝑋 ↔ ( ( 1r𝑅 ) · 𝑋 ) = 𝑋 ) )
8 oveq2 ( 𝑢 = ( 1r𝑅 ) → ( 𝑋 · 𝑢 ) = ( 𝑋 · ( 1r𝑅 ) ) )
9 8 eqeq1d ( 𝑢 = ( 1r𝑅 ) → ( ( 𝑋 · 𝑢 ) = 𝑋 ↔ ( 𝑋 · ( 1r𝑅 ) ) = 𝑋 ) )
10 7 9 anbi12d ( 𝑢 = ( 1r𝑅 ) → ( ( ( 𝑢 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 𝑢 ) = 𝑋 ) ↔ ( ( ( 1r𝑅 ) · 𝑋 ) = 𝑋 ∧ ( 𝑋 · ( 1r𝑅 ) ) = 𝑋 ) ) )
11 10 adantl ( ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) ∧ 𝑢 = ( 1r𝑅 ) ) → ( ( ( 𝑢 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 𝑢 ) = 𝑋 ) ↔ ( ( ( 1r𝑅 ) · 𝑋 ) = 𝑋 ∧ ( 𝑋 · ( 1r𝑅 ) ) = 𝑋 ) ) )
12 1 2 3 ringidmlem ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( ( ( 1r𝑅 ) · 𝑋 ) = 𝑋 ∧ ( 𝑋 · ( 1r𝑅 ) ) = 𝑋 ) )
13 5 11 12 rspcedvd ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ∃ 𝑢𝐵 ( ( 𝑢 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 𝑢 ) = 𝑋 ) )