Step |
Hyp |
Ref |
Expression |
1 |
|
ringid.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringid.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
4 |
1 3
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
5 |
4
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
6 |
|
oveq1 |
⊢ ( 𝑢 = ( 1r ‘ 𝑅 ) → ( 𝑢 · 𝑋 ) = ( ( 1r ‘ 𝑅 ) · 𝑋 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑢 = ( 1r ‘ 𝑅 ) → ( ( 𝑢 · 𝑋 ) = 𝑋 ↔ ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑢 = ( 1r ‘ 𝑅 ) → ( 𝑋 · 𝑢 ) = ( 𝑋 · ( 1r ‘ 𝑅 ) ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑢 = ( 1r ‘ 𝑅 ) → ( ( 𝑋 · 𝑢 ) = 𝑋 ↔ ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) ) |
10 |
7 9
|
anbi12d |
⊢ ( 𝑢 = ( 1r ‘ 𝑅 ) → ( ( ( 𝑢 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 𝑢 ) = 𝑋 ) ↔ ( ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ∧ ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑢 = ( 1r ‘ 𝑅 ) ) → ( ( ( 𝑢 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 𝑢 ) = 𝑋 ) ↔ ( ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ∧ ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) ) ) |
12 |
1 2 3
|
ringidmlem |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ∧ ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) ) |
13 |
5 11 12
|
rspcedvd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑢 ∈ 𝐵 ( ( 𝑢 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 𝑢 ) = 𝑋 ) ) |